-Chapitre 17—

Espaces vectoriels

1	Esp	paces vectoriels	2
	1.1	Généralités	2
	1.2	Espaces vectoriels de référence	3
	1.3	Combinaisons linéaires	6
2	Sous-espaces vectoriels		6
	2.1	Définition	6
	2.2	Sous-espace vectoriel engendré par une partie	8
	2.3	Somme de sous-espaces vectoriels	10
3	Familles finies de vecteurs		13
	3.1	Familles libres	13
	3.2	Familles génératrices	16
	3.3	Rases	16

1 Espaces vectoriels

Dans tout le chapitre \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

1.1 Généralités

Définition.

Soit E un ensemble non vide muni :

• d'une loi de composition interne notée + (l'addition) :

$$\begin{array}{ccc} E \times E & \to & E \\ (x,y) & \mapsto & x+y \end{array}$$

 \bullet d'une loi externe notée \cdot (la multiplication par un scalaire) :

$$\begin{array}{ccc} \mathbb{K} \times E & \to & E \\ (\lambda, y) & \mapsto & \lambda. y \end{array}$$

On dit que (E, +, .) est un \mathbb{K} -espace vectoriel (ou de manière abrégée \mathbb{K} -e.v., ou e.v.), si :

- (E, +) est un groupe commutatif, c'est à dire :
 - l'addition est associative : $\forall (x, y, z) \in E^3$, (x + y) + z = x + (y + z). On pourra ainsi écrire x + y + z.
 - l'addition est commutative : $\forall (x,y) \in E^2, x+y=y+x$.
 - l'addition admet un élément neutre : $\exists e \in E, \forall x \in E, x + e = e + x = x$.
 - tout élément de E est symétrisable : pour tout $x \in E$, il existe $x' \in E$ tel que x + x' = e.
- La multiplication par un scalaire · vérifie :
 - . est "associative" : $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall x \in E, \lambda.(\mu.x) = (\lambda \mu).x.$
 - . est distributive sur l'addition de $E: \forall (\lambda, \mu) \in \mathbb{K}^2, \forall x \in E, (\lambda + \mu).x = \lambda.x + \mu.x.$
 - . est distributive sur l'addition de \mathbb{K} : $\forall \lambda \in \mathbb{K}, \forall (x,y) \in E^2, \lambda.(x+y) = \lambda.x + \lambda.y$.
 - $1_{\mathbb{K}}$ est l'élément neutre pour . : $\forall x \in E, \, 1_{\mathbb{K}} \cdot x = x.$

Vocabulaire. On appelle:

- scalaires les éléments λ de \mathbb{K} ;
- vecteurs les éléments x (ou \vec{x}) de l'espace vectoriel E.

Remarques.

• L'élément neutre de (E, +) est unique : en effet si $e, e' \in E$ sont des éléments neutres pour +, on a :

$$e' = e + e' = e$$
.

On note cet élément neutre 0_E et on l'appelle le vecteur nul de E.

• Pour tout $x \in E$, l'élément x' tel que $x + x' = 0_E$ est unique, appelé le symétrique de x dans (E, +) et noté -x: en effet si $x', x'' \in E$ satisfont ces hypothèses, on a :

$$x' = x' + 0_E = x' + (x + x'') = (x' + x) + x'' = 0_E + x'' = x''.$$

Propriété 1 (Règles de calcul dans un e.v.) —

- $$\begin{split} &(1) \ \, \text{Pour} \,\, x \in E, \, \text{on a} \,\, 0_{\mathbb{K}}.x = 0_E \,\, \text{et pour} \,\, \lambda \in \mathbb{K}, \, \lambda.0_E = 0_E \,\, ; \\ &(2) \ \, \forall (\lambda,x) \in \mathbb{K} \times E, \, \lambda \cdot x = 0_E \,\, \Rightarrow \,\, \lambda = 0_{\mathbb{K}} \,\, \text{ou} \,\, x = 0_E \,\, ; \\ &(3) \ \, \text{Pour} \,\, \lambda \in \mathbb{K} \,\, \text{et} \,\, x \in E, \, (-\lambda) \cdot x = \lambda \cdot (-x) = -(\lambda \cdot x). \,\, \text{En particulier}, \, (-1_{\mathbb{K}}) \cdot x = -x \,\, ; \\ &(4) \ \, \text{Pour tout} \,\, \lambda, \mu \in \mathbb{K}, \, x \in E, \, (\lambda \mu) \cdot x = \lambda \cdot x \mu \cdot x \,\, ; \end{split}$$
- (5) Pour tout $\lambda \in \mathbb{K}$, $x, y \in E$, $\lambda \cdot (x y) = \lambda \cdot x \lambda \cdot y$.

Preuve.

(1) Soit $x \in E$. Alors $0_{\mathbb{K}}.x = (0_{\mathbb{K}} + 0_{\mathbb{K}}).x = 0_{\mathbb{K}}.x + 0_{\mathbb{K}}.x$ par distributivité. Ainsi, en ajoutant le symétrique de $0_{\mathbb{K}}.x,$ on obtient : $0_{\mathbb{K}}.x=0_E$.

Pour $\lambda \in \mathbb{K}$, $\lambda . 0_E = \lambda . (0_E + 0_E) = \lambda . 0_E + \lambda . 0_E$ par distributivité. Ainsi on obtient $\lambda . 0_E = 0_E$ en ajoutant l'opposé de $\lambda.0_E$.

(2) Soit $(\lambda, x) \in \mathbb{K} \times E$ tel que $\lambda \cdot x = 0_E$. Supposons $\lambda \neq 0_{\mathbb{K}}$ et montrons que $x = 0_E$. On a

$$x = 1_{\mathbb{K}} \cdot x = (\lambda^{-1}\lambda) \cdot x = \lambda^{-1} \cdot (\lambda \cdot x) = \lambda^{-1} \cdot 0_E = 0_E.$$

(3) Soit $(\lambda, x) \in \mathbb{K} \times E$, on a :

$$(-\lambda) \cdot x + \lambda \cdot x = (-\lambda + \lambda) \cdot x = 0_{\mathbb{K}} \cdot x = 0_{E}.$$

Donc $-(\lambda \cdot x) = (-\lambda) \cdot x$.

$$\lambda \cdot (-x) + \lambda \cdot x = \lambda \cdot (-x + x) = \lambda \cdot 0_E = 0_E.$$

Donc $\lambda \cdot (-x) = -(\lambda \cdot x)$

Enfin pour $\lambda = 1_{\mathbb{K}}, (-1_{\mathbb{K}}) \cdot x = -(1_{\mathbb{K}} \cdot x) = -x.$

(4) et (5) découlent directement de (3).

Espaces vectoriels de référence

Espace vectoriel \mathbb{K}

L'ensemble K muni de son addition et de sa multiplication est un K-espaces vectoriel où le vecteur nul est $0_{\mathbb{K}} = 0$. En particulier, \mathbb{R} est un \mathbb{R} -espace vectoriel et \mathbb{C} est un \mathbb{C} -espace vectoriel. On peut voir aussi $\mathbb C$ est comme un $\mathbb R$ -espace vectoriel si on le munit de son addition et de la loi externe :

$$\begin{array}{cccc} \mathbb{R} \times \mathbb{C} & \to & \mathbb{C} \\ (\lambda, x) & \mapsto & \lambda \times x & \text{produit dans } \mathbb{C}. \end{array}$$

Espace vectoriel \mathbb{K}^n

Les ensembles \mathbb{R}^2 et \mathbb{R}^3 des vecteurs du plan et de l'espace forment un \mathbb{R} -espace vectoriel. Plus généralement pour $n \in \mathbb{N}^*$, on définit sur l'ensemble \mathbb{K}^n les lois suivantes :

• l'addition : pour $(x_1, x_2, ..., x_n) \in \mathbb{K}^n$ et $(y_1, y_2, ..., y_n) \in \mathbb{K}^n$:

$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_3 + y_3);$$

• la multiplication par un scalaire : pour $(x_1, x_2, ..., x_n) \in \mathbb{K}^n$ et $\lambda \in \mathbb{K}$:

$$\lambda.(x_1, x_2, ..., x_n) = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$$

Propriété 2 -

Muni des lois précédentes, l'ensemble \mathbb{K}^n est un \mathbb{K} espace vectoriel, où le vecteur nul est $0_{\mathbb{K}^n} = (0, \dots, 0)$.

Preuve.

• Soit $x = (x_1, ..., x_n), y = (y_1, ..., y_n), z = (z_1, ..., z_n) \in \mathbb{K}^n$, on a $x + (y + z) = (x_1, ..., x_n) + ((y_1, ..., y_n) + (z_1, ..., z_n))$ $= (x_1, ..., x_n) + ((y_1 + z_1, ..., y_n + z_n))$ $= (x_1 + (y_1 + z_1), ..., x_n + (y_n + z_n))$ $= ((x_1 + y_1) + z_1, ..., (x_n + y_n) + z_n)$ $= (x_1 + y_1, ..., x_n + y_n) + (z_1, ..., z_n)$ $= ((x_1, ..., x_n) + (y_1, ..., y_n)) + (z_1, ..., z_n)$ = (x + y) + z

donc + est associative.

- Soit $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{K}^n$, on a : $x + y = (x_1 + y_1, ..., x_n + y_n) = (y_1 + x_1, ..., y_n + x_n) = y + x$ donc + est commutative.
- Le n-uplet $0_{\mathbb{K}^n} = (0, ..., 0)$ est élément neutre, puisque pour tout $x = (x_1, ..., x_n) \in \mathbb{K}^n$, on a $x + 0_{\mathbb{K}^n} = (x_1 + 0, ..., x_n + 0) = x$.
- Pour tout $x = (x_1, ..., x_n) \in \mathbb{K}^n$, on a : $(x_1, x_2, ..., x_n) + (-x_1, -x_2, ..., -x_n) = (0, ..., 0) = 0_{\mathbb{K}^n}$ et donc l'opposé de x est $-x = (-x_1, ..., -x_n)$.
- Pour tout $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{K}^n, \lambda \in \mathbb{K}, \mu \in \mathbb{K}, \text{ on a:}$
 - $-\lambda.(\mu.x) = \lambda.(\mu x_1, \dots, \mu x_n) = (\lambda \mu x_1, \dots, \lambda \mu x_n) = (\lambda \mu).x$
 - $-(\lambda + \mu) \cdot x = ((\lambda + \mu)x_1, \dots, (\lambda + \mu)x_n) = (\lambda x_1 + \mu x_1, \dots, \lambda x_n + \mu x_n) = (\lambda x_1, \dots, \lambda x_n) + (\mu x_1, \dots, \mu x_n) = \lambda \cdot x + \mu \cdot x$
 - $-\lambda.(x+y) = (\lambda(x_1+y_1), \dots, \lambda(x_n+y_n)) = (\lambda x_1 + \lambda y_1, \dots, \lambda x_n + \lambda y_n) = (\lambda x_1, \dots, \lambda x_n) + (\lambda y_1, \dots, \lambda y_n) = \lambda.x + \lambda.y$
 - $-1.x = (1x_1, ...1x_n) = x.$

Produit cartésien d'espaces vectoriels

Considérons n \mathbb{K} -espaces vectoriels E_1, \dots, E_n , et le produit cartésien $E = E_1 \times \dots \times E_n = \{(x_1, \dots, x_n) | x_i \in E_i\}$. On définit les opérations suivantes :

- l'addition : $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$;
- la multiplication par un scalaire : $\lambda \cdot (x_1, \dots, x_n) = (\lambda \cdot x_1, \dots, \lambda \cdot x_n)$.

– Propriété 3 –

Muni de ces opérations, $(E, +, \cdot)$ est un espace vectoriel, où le vecteur nul 0_E est égal à $(0_{E_1}, \dots, 0_{E_n})$.

Remarque. Si E est un \mathbb{K} -espace vectoriel, E^n est un \mathbb{K} -espace vectoriel. Si $E = \mathbb{K}$, on retrouve ainsi que \mathbb{K}^n est un \mathbb{K} -espace vectoriel.

Espaces vectoriel $\mathcal{M}_{n,p}(\mathbb{K})$

Si $n, p \in \mathbb{N}^*$, l'ensemble $\mathcal{M}_{n,p}(\mathbb{K})$ des matrices à coefficients dans \mathbb{K} de taille $n \times p$, muni de l'addition matricielle et de la multiplication par un scalaire est un \mathbb{K} -espace vectoriel, où le vecteur nul est $0_{\mathcal{M}_{n,p}(\mathbb{K})} = 0_{n,p}$.

Espace vectoriel $\mathcal{F}(\Omega, E)$

Soient Ω un ensemble non vide et E un \mathbb{K} -espace vectoriel. Pour $(f,g) \in \mathcal{F}(\Omega,E)^2$ et $\lambda \in \mathbb{K}$, on définit les applications suivantes:

$$f+g: \Omega \to E$$

 $x \mapsto f(x)+g(x)$ et $\lambda.f: \Omega \to E$
 $x \mapsto \lambda f(x)$

- Propriété 4 -

Si Ω est un ensemble non vide et E un \mathbb{K} espace vectoriel, $(\mathcal{F}(\Omega, E), +, \cdot)$ est un \mathbb{K} -espace vectoriel, où le vecteur nul $0_{\mathcal{F}(\Omega, E)}$ est la fonction $\Omega \to E, \omega \mapsto 0_E$.

Preuve.

• - Soit $(f, g, h) \in \mathcal{F}(\Omega, E)^3$. Pour tout $x \in \Omega$, on a:

$$(f + (g + h))(x) = f(x) + (g + h)(x)$$

$$= f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x)$$

$$= (f + g)(x) + h(x)$$

$$= ((f + g) + h)(x)$$

Ainsi, f + (g + h) = (f + g) + h et + est associative.

- Soit $(f,g) \in \mathcal{F}(\Omega, E)$. Pour tout $x \in \Omega$, on a (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x) donc f+g=g+f.
- La fonction nulle :

$$0_{\mathcal{F}(\omega,E)}: \quad \Omega \quad \to \quad E$$
$$\quad x \quad \mapsto \quad 0_{\mathbb{K}}$$

est élément neutre puisque pour tout $f \in \mathcal{F}(\Omega, E)$ et pour tout $x \in \Omega$, on a $(f + 0_{\mathcal{F}(\omega, E)})(x) = f(x) + 0_{\mathbb{K}} = f(x)$ donc $f + 0_{\mathcal{F}(\omega, E)} = f$.

- Soit $f \in \mathcal{F}(\Omega, E)$. La fonction $-f : \Omega \to E, x \mapsto -f(x)$ vérifie l'égalité $f + (-f) = 0_{\mathcal{F}(\omega, E)}$.
- Soient $(\lambda, \mu) \in \mathbb{K}^2$ et $f, g \in \mathcal{F}(\Omega, E)$
 - Pour tout $x \in \Omega$, on a $(\lambda.(\mu.f))(x) = \lambda.(\mu.f(x)) = (\lambda\mu).f(x) = ((\lambda\mu).f)(x)$ donc $\lambda.(\mu.f) = (\lambda\mu).f$.
 - Pour $x \in \Omega$, on a $((\lambda + \mu).f)(x) = \lambda.f(x) + \mu.f(x) = (\lambda.f + \mu.f)(x)$ donc $(\lambda + \mu).f = \lambda.f + \mu.f$.
 - Pour tout $x \in \Omega$, on a $(\lambda \cdot (f+g))(x) = \lambda \cdot (f(x) + g(x)) = \lambda \cdot f(x) + \mu \cdot g(x) = (\lambda \cdot f + \mu \cdot g)(x)$ donc $\lambda \cdot (f+g) = \lambda \cdot f + \mu \cdot g$.
 - Pour tout $x \in \Omega$, (1.f)(x) = 1.f(x) = f(x), donc 1.f = f.

Remarque. Si $\Omega = \mathbb{R} = \mathbb{K}$, on en déduit par exemple que l'ensemble $\mathcal{F}(\mathbb{R}, \mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} est un espace vectoriel. Les fonctions cos, exp,... sont des exemples de vecteurs de cet espace vectoriel.

Comme conséquence, on retrouve la propriété suivante prouvée dans un chapitre précédent :

- Propriété 5 -

L'ensemble $\mathbb{K}^{\mathbb{N}}$ des suites à valeurs dans \mathbb{K} est muni d'une structure d'espace vectoriel dont le vecteur nul est la suite constante égale à 0.

Espace vectoriel $\mathbb{K}[X]$

L'ensemble $\mathbb{K}[X]$ des polynômes à coefficients dans \mathbb{K} , muni de l'addition et de la multiplication par un scalaire, est un \mathbb{K} -espace vectoriel dont le vecteur nul $0_{\mathbb{K}[X]}$ est le polynôme nul.

1.3 Combinaisons linéaires

Définition.

Soit (E, +, .) un \mathbb{K} espace vectoriel.

• Soit $p \in \mathbb{N}^*$ et $x_1, ..., x_p \in E$. On dit que $x \in E$ est **combinaison linéaire des vecteurs** $x_1, ..., x_p \in E$ s'il existe $(\lambda_1, ..., \lambda_p) \in \mathbb{K}^p$ tel que

$$x = \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \dots \lambda_p \cdot x_p = \sum_{i=1}^p \lambda_i \cdot x_i.$$

• Soit X une partie de E. On dit que $x \in E$ est combinaison linéaire de vecteurs de X si x est combinaison linéaire d'une famille finie de vecteurs de X.

Exemples.

- Dans \mathbb{R}^3 , (1,2,0) est combinaison linéaire de (1,1,0) et (0,1,0), mais pas de (1,1,0) et (0,1,1).
- Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, ch et sh sont combinaisons linéaires de $x \mapsto e^x$ et $x \mapsto e^{-x}$, \cos^3 est combinaison linéaire de $x \mapsto 1$, $\cos(2x)$ et $x \mapsto \cos(3x)$.
- Si $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et $X = \{e_n : x \mapsto x^n | n \in \mathbb{N}\}$, $f \in E$ est combinaison linéaire de vecteurs de X si et seulement si f est une fonction polynomiale. Les combinaisons linéaires des fonctions e_k pour $0 \le k \le n$ sont les fonctions polynomiales de degré $\le n$.

2 Sous-espaces vectoriels

2.1 Définition

Définition.

Soit E un \mathbb{K} -espace vectoriel. On dit que $F \subset E$ est un sous-espace vectoriel de E si

- (i) $F \neq \emptyset$;
- $\mbox{(ii)} \ \forall (x,y) \in F^2, \, \forall (\lambda,\mu) \in \mathbb{K}^2, \, \lambda.x + \mu.y \in F.$

Exemple. Si E est un \mathbb{K} -e.v., alors $\{0_E\}$ et E sont des sous-espaces vectoriels de E (appelés sous-espaces vectoriels triviaux de E).

Remarques.

- Si F est un s.e.v. de E, alors F est stable par combinaisons linéaires : on le montre par récurrence en utilisant (ii).
- Tout sous-espace F de E contient le vecteur nul 0_E : en effet, puisque $F \neq \emptyset$, il existe $x \in F$. D'où $0_E = 0 \cdot x \in F$.
- Pour montrer que $F \neq \emptyset$, on vérifiera que $0_E \in F$. En particulier, si $0_E \notin F$, F ne peut pas être un s.e.v.

Remarque. Comme un sous-espace vectoriel est stable par combinaisons linéaires, on peut le munir des lois induites :

Propriété 6 —

Soit $(E,+,\cdot)$ un \mathbb{K} -e.v. et F un sous-espace de E. Alors F muni des lois induites est lui-même un \mathbb{K} espace vectoriel.

Preuve.

- \bullet L'ensemble F est muni d'une addition et d'une loi externe.
- - L'addition reste évidemment associative et commutative car ceci est vraie dans E contenant F.
 - Comme 0_E ∈ F, l'addition de F possède un élément neutre : en effet pour tout x ∈ F ⊂ E, on a x + $0_E x$.
 - Soit $x \in F$. Alors $-x = (-1).x \in F$, donc tout élément de F admet un opposé qui est bien dans F.
- Les dernières propriétés, qui sont vraies lorsque x et y appartiennent à E, sont à fortiori vraies lorsque x et y appartiennent à F.

Exercice. Montrer que $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . En est-il de même pour $G = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1\}$?

 $(0,0,0) \in \mathbb{R}^3$ et 0+0+0=0, ainsi, $0_{\mathbb{R}^3}=(0,0,0) \in F$ et $F \neq \emptyset$. Soient $x=(x_1,x_2,x_3), \ y=(y_1,y_2,y_3) \in F^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. Alors $\lambda.x + \mu.y = (\lambda x_1 + \mu y_1, \lambda_2 + \mu y_2, \lambda x_3 + \mu y_3)$ vérifie

$$(\lambda x_1 + \mu y_1) + (\lambda x_2 + \mu y_2) + (\lambda x_3 + \mu y_3) = \lambda (x_1 x_2 + x_3) + \mu (y_1 + y_2 + y_3) = 0$$

donc $\lambda . x + \mu . y \in F$. Ainsi F est un sous-espace vectoriel de \mathbb{R}^3 . G n'est pas un espace vectoriel puisque $0_{\mathbb{K}^3} \notin G$.

Remarque. Plus généralement dans le plan, une droite D passant par (0,0) est un sous-espace vectoriel de \mathbb{R}^2 . Dans l'espace, une droite D ou un plan P passant par (0,0,0) est un sous-espace vectoriel de \mathbb{R}^3 .

7

Exercice. Montrer que $F = \{(x, y, z) \in \mathbb{R}^3 | x + y = 0\}$ est un s.e.v. de \mathbb{R}^3 .

Exemples.

- Pour $n \in \mathbb{N}$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel du \mathbb{K} espace vectoriel $\mathbb{K}[X]$.
- L'ensemble des matrices diagonales, triangulaires supérieures (ou inférieures) de $\mathcal{M}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
- L'ensemble des solutions d'un système linéaire homogène de n équations à p inconnues à coefficients dans \mathbb{K} est un sous-espace vectoriel de \mathbb{K}^p .
- Les ensembles $\mathcal{C}^k(I,\mathbb{R})$, $\mathcal{C}^{\infty}(I,\mathbb{R})$ où I est un intervalle de \mathbb{R} et $k \in \mathbb{N}$, sont des sous-espaces vectoriels de $\mathcal{F}(I,\mathbb{R})$.
- L'ensemble des solutions, sur un intervalle I, d'une équation différentielle linéaire homogène est un sous-espace vectoriel de $\mathcal{C}^1(I)$.

Exercice. Montrer que l'ensemble $\mathcal{S}_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$

▶ Pour montrer qu'un ensemble E est un K-espace vectoriel, on montrera systématiquement qu'il s'agit d'un sous-espace vectoriel de l'un des exemples de référence vus dans la sous-partie précédente.

Exercices. Montrer que les ensembles suivants sont des espaces vectoriels.

- $\blacklozenge C = \{ \text{ suites convergentes } \};$
- \bullet $\mathcal{P} = \{ \text{ fonctions paires } \}.$

Sous-espace vectoriel engendré par une partie

Soit X une partie de $(E, +, \cdot)$ e.v. On cherche le plus petit sous-espace vectoriel de E qui contient X (pour l'inclusion).

Exemple. Dans le plan, si $X = \{u\}$ avec $u \neq 0$. Alors ce s.e.v est la droite vectorielle dirigée par u:

$$\mathcal{D} = \{ \lambda u | \lambda \in \mathbb{R} \}.$$

L'intersection $\cap_{i\in I}F_i$ d'une famille non vide de sous-espaces vectoriels $(F_i)_{i\in I}$ est un sousespace vectoriel de E.

Preuve. Pour tout $i \in I$, $0 \in F_i$, donc $0 \in \bigcap_{i \in I} F_i$ et $\bigcap_{i \in I} F_i \neq \emptyset$.

Soient $(x,y) \in \left(\bigcap_{i \in I} F_i\right)^2$ et $(\lambda,\mu) \in \mathbb{K}^2$. pour $i \in I$, $(x,y) \in F_i^2$ donc $\lambda.x + \mu.y \in F_i$. Ainsi $\bigcap_{i \in I} F_i$ est un sous-espace vectoriel de E.

Remarque. La réunion de sous-espaces vectoriels n'est en général pas un sous-espace vectoriel : dans $E = \mathbb{R}^2$, si F_1 est l'axe des abscisses et F_2 l'axe des ordonnées, (1,0) et (0,1) sont dans $F_1 \cup F_2$, mais pas (1,0) + (0,1) = (1,1).

Définition.

Soit $(E, +, \cdot)$ un e.v. et X une partie de E. On appelle sous-espace vectoriel engendré par X et on note Vect(X) le plus petit des sous-espaces vectoriels de E contenant X.

Remarque. D'après ce qui précède un tel s.e.v. existe : c'est l'intersection des sous-espaces contenant X (dont fait partie E):

$$Vect(X) = \bigcap_{X \subset F, \ F \ s.e.v.} F.$$

En effet:

- F est bien un sous-espace vectoriel de E par la propriété précédente ; $X \subset F$, F s.e.v.
- c'est bien le plus petit au sens de l'inclusion car pour tout G s.e.v. de E tel que $X \subset G$, on a $F=G\cap \qquad \bigcap \qquad F\subset G.$ $X \subset F$, F s.e.v.

– Propriété 8 –

- $(1)\ F\ {\rm est\ un\ sous\text{-}espace\ vectoriel} \Leftrightarrow F=Vect(F)\ ;$ $(2)\ {\rm Si\ }X\subset Y, \ {\rm alors\ }Vect(X)\subset Vect(Y).$

Preuve.

Soit $(E, +, \cdot)$ un e.v. et X une partie non vide de E. Alors le sous-espace Vect(X) est égal à l'ensemble $\mathcal C$ des combinaisons linéaires des vecteurs de X.

Preuve. Montrons que $Vect(X) = \mathcal{C}$ par double inclusion.

- $\supset Vect(X)$ est un sous-espace vectoriel contenant X. Il contient donc toutes les combinaisons linéaires de vecteurs de X, donc $\mathcal{C} \subset Vect(X)$.
- \subset Montrons que \mathcal{C} est un sous-espace vectoriel de E contenant X.
 - Pour tout $x \in X$, x est une combinaison linéaire de vecteurs de X, donc $x \in \mathcal{C}$ et on a bien $X \subset \mathcal{C}$.
 - On a déjà que $\mathcal{C} \neq \emptyset$ car $X \subset \mathcal{C}$. Soient à présent $x, y \in \mathcal{C}$ et $\lambda, \mu \in \mathbb{K}$. Alors x et y sont des combinaisons linéaires de vecteurs de X. Mais alors $\lambda \cdot x + \mu \cdot y$ est aussi une combinaison linéaire d'éléments de X. Donc $\lambda \cdot x + \mu \cdot y$ appartient à C.

Ainsi \mathcal{C} est un sous-espace vectoriel de E contenant X. Comme Vect(X) est le plus petit (au sens de l'inclusion) sous-espace vectoriel de E contenant X, on obtient bien $Vect(X) \subset \mathcal{C}$.

Remarque. Si $X = \{e_1, \dots, e_n\}$ est finie, on note $Vect(\{e_1, \dots, e_n\})$ plus simplement $Vect(e_1, \dots, e_n)$ ou $Vect(e_i)_{i=1,\dots,n}$. On a alors l'égalité :

$$Vect(e_1, \dots, e_n) = \{\lambda_1 \cdot e_1 + \dots + \lambda_n \cdot e_n | \lambda_1, \dots, \lambda_n \in \mathbb{K}\}.$$

En particulier, on a $x \in Vect(e_1, ..., e_n) \iff \exists (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, \ x = \sum_{i=1}^n \lambda_i e_i.$

Exemples.

- Dans le \mathbb{R} -e.v. \mathbb{C} , $Vect(1) = \mathbb{R}$, $Vect(i) = i\mathbb{R}$. Dans le \mathbb{C} -e.v. \mathbb{C} , $Vect(1) = \mathbb{C}$.
- Si x et y sont deux vecteurs non colinéaires de l'espace, alors Vect(x,y) est un plan vectoriel.
- Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, le sous-espace vectoriel engendré par $X = \{e_n : x \mapsto x^n | n \in \mathbb{N}\}$ est l'espace des fonctions polynomiales.
- Dans $E = \mathbb{R}^{\mathbb{N}}$, l'ensemble \mathcal{S} des suites réelles satisfaisant :

$$u_{n+2} = u_{n+1} + u_n \quad \forall n \in \mathbb{N}$$

est (en notant $r_{\pm} = \frac{1 \pm \sqrt{5}}{2}$) :

$$\mathcal{S} = \left\{ \lambda r_+^n + \mu r_-^n | \lambda, \mu \in \mathbb{R} \right\} = Vect((r_+^n)_n, (r_-^n)_n).$$

En particulier, on obtient que S est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Exercice. Soit $F = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$. Écrire F comme s.e.v. engendré par une partie.

$$F = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\} = \{(x, y, -x - y) \in \mathbb{R}^3 | x + y + z = 0\}$$
$$= \{x(1, 0, -1) + y(0, 1, -1) \in \mathbb{R}^3 | x + y + z = 0\} = Vect((1, 0, -1), (0, 1, -1))$$

Ainsi F est le plan vectoriel engendré par les vecteurs $u_1 = (1, 0, -1)$ et $u_2 = (0, 1, -1)$. En particulier ce qu'on a fait montre que F est un sous-espace vectoriel de \mathbb{R}^3 .

Exercice. Montrons l'égalité des s.e.v. de \mathbb{R}^3 suivant :

$$F = Vect(u_1, u_2)$$
 et $G = Vect(v_1 = (1, 2, -3), v_2 = (3, -2, -2), v_3 = (1, -2, 1)).$

A faire...

Exercices. Écrire F comme s.e.v. engendré par une partie dans les cas suivants :

- ♦ $F = \{(x, y, z, t) \in \mathbb{R}^4 | x + y t = 0\}.$ Solution: F = Vect((1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 0)).
- ♦ $F = \{(x, y, z, t) \in \mathbb{R}^4 | x + y + z + t = 0 \text{ et } x y + z t = 0\}.$ Solution : F = Vect((1, 0, -1, 0), (0, 1, 0, -1)).

2.3 Somme de sous-espaces vectoriels

Définition.

Si F et G sont deux sous-espaces vectoriels de E, on appelle somme de F et G et on note F+G l'ensemble $F+G=\{x+y\;;\;(x,y)\in F\times G\}.$

Propriété 10

F+G est un sous-espace vectoriel de E.

Preuve. Comme $0 \in F$ et $0 \in G$, $0 = 0 + 0 \in F + G$. Soient $(x, y) \in (F + G)^2$ et $(\lambda, \mu) \in \mathbb{K}^2$. On a $(e, f) \in F^2$ et $(g, h) \in G^2$ tels que x = e + g et y = f + h. Alors $\lambda . x + \mu . y = \lambda . (e + g) + \mu . (f + h) = (\lambda . e + \mu . f) + (\lambda . g + \mu . h)$, avec $\lambda . e + \mu . f \in F$ et $\lambda . g + \mu . h \in G$. Ainsi $\lambda . x + \mu . y \in F + G$ et F + G est un sous-espace vectoriel de E.

Remarque. On a $F + G = Vect(F \cup G)$. En effet :

⊃ Si $x \in F$, on écrit x = x + 0 avec $0 \in G$, donc $x \in F + G$ et $F \subset F + G$. On montre de même que $G \subset F + G$. Ainsi, $F \cup G \subset F + G$. Puisque F + G est un espace vectoriel contenant $F \cup G$, et que $Vect(F \cup G)$ est le plus petit espace vectoriel contenant $F \cup G$, on obtient $Vect(F \cup G) \subset F + G$.

 \subset Réciproquement soit $z \in F + G$, on a $(x,y) \in F \times G$ tel que z = x + y. Alors $x \in Vect(F \cup G)$, $y \in Vect(F \cup G)$. Puisque $Vect(F \cup G)$ est un s.e.v., on en déduit que $z \in Vect(F \cup G)$ et donc que $F + G \subset Vect(F \cup G)$.

Exemples.

- $F + \{0_E\} = F$ et F + F = F. Plus généralement si $F \subset G$, alors on a F + G = G: en effet en utilisant la remarque précédente, on a $F + G = Vect(F \cup G) = Vect(G)$.
- Si (v_1, \ldots, v_m) et (w_1, \ldots, w_n) sont deux familles de vecteurs de E, alors :

$$Vect(v_1,\ldots,v_m) + Vect(w_1,\ldots,w_n) = Vect(v_1,\ldots,v_m,w_1,\ldots,w_n)$$

En effet, on a:

$$z \in Vect(v_i)_i + Vect(w_j)_j \Leftrightarrow \exists (x, y) \in Vect(v_i)_i \times Vect(w_j)_j, z = x + y$$
$$\Leftrightarrow \exists \lambda_1, \dots, \lambda_m, \mu_1, \dots \mu_n \in \mathbb{K}, z = \sum_i \lambda_i \cdot v_i + \sum_j \mu_j \cdot w_j$$
$$\Leftrightarrow z \in Vect(v_1, \dots, v_m, w_1, \dots, w_n)$$

Définition.

On dit que la somme F+G est directe si pour tout $z\in F+G$, la décomposition z=x+y avec $x\in F$ et $y\in G$ est unique, c'est à dire :

$$\forall z \in F + G, \quad \exists ! (x, y) \in F \times G, \quad z = x + y.$$

On note alors $F \oplus G$.

- Propriété 11 (Caractérisation des sommes directes) —

Soient E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E. La somme F+G est directe si et seulement si $F \cap G = \{0_E\}$.

Preuve.

- ⇒ Supposons que la somme F+G soit directe. On a $0 \in F$ et $0 \in G$ donc $0 \in F \cap G$ et $\{0\} \subset F \cap G$. Soit $x \in F \cap G$. Alors x s'écrit x+0 avec $x \in F$ et $0 \in G$, mais aussi 0+x, avec $0 \in F$ et $x \in G$. Par unicité de l'écriture, x=0. Ainsi $F \cap G \subset \{0\}$ et $F \cap G = \{0\}$.
- \Leftarrow Réciproquement, supposons $F \cap G = \{0\}$. Soit $z \in F + G$, et (x,y), $(x',y') \in F \times G$ tels que z = x + y et z = x' + y'. Alors x + y = x' + y' donc x x' = y' y, avec $x x' \in F$ (car x et $x' \in F$) et $y' y \in G$ (car y et $y' \in G$). Ainsi $x x' = y' y \in F \cap G = \{0\}$, donc x x' = y' y = 0 et x = x', y = y'. On a donc unicité de l'écriture de z comme somme d'un élément de F et d'un élément de G, donc la somme est directe.

Exemple. Dans \mathbb{R}^3 , on considère les deux sous-espaces vectoriels:

$$F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$$
 et $G = Vect((1, 1, 1))$

11

Montrons que F et G sont en somme directe : soit $x \in F \cap G$. Comme $x \in G$, il existe $a \in \mathbb{R}$ tel que x = a(1, 1, 1). Comme $x \in F$, on a 3a = 0 et donc a = 0; par suite x = 0, ce qui prouve que la somme F + G est directe.

Définition.

Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E. On dit que F et G sont supplémentaires dans E si $E = F \oplus G$. Ainsi, on a la caractérisation :

$$E = F \oplus G \quad \Leftrightarrow \quad \forall z \in E, \exists ! (x, y) \in F \times G, z = x + y$$

- **Propriété 12** (Caractérisation) ——

$$E = F \oplus G \quad \Leftrightarrow \quad \begin{cases} E = F + G \\ F \cap G = \{0_E\} \end{cases}$$

Exemple. $E = \mathbb{R}^2$, $e_1 = (1,0)$, $e_2 = (-1,1)$. Montrons que $E = Vect(e_1) \oplus Vect(e_2)$. Soit $(x,y) \in E$, et cherchons $a,b \in \mathbb{R}$ tels que :

$$(x,y) = a \cdot e_1 + b \cdot e_2$$

On a:

$$(x,y) = a \cdot e_1 + b \cdot e_2 \Leftrightarrow \begin{cases} a = x + y \\ b = y \end{cases}$$

Ce système admet une unique solution, donc $\mathbb{R}^2 = Vect(e_1) \oplus Vect(e_2)$.

Exemple. Dans \mathbb{R}^3 , on considère les deux sous-espaces vectoriels:

$$F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$$
 et $G = Vect((1, 1, 1))$

Montrons que $\mathbb{R}^3 = F \oplus G$.

- On a déjà montré que $F \cap G = \{0_E\}$.
- De façon immédiate, on a $F + G \subset \mathbb{R}^3$. Démontrons l'autre inclusion.

Brouillon (Analyse):

Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Supposons qu'il existe $a \in \mathbb{R}$ et $y = (y_1, y_2, y_3) \in F$ tels que x = y + a(1, 1, 1). On a alors : $y_1 + y_2 + y_3 = a_1 - a + a_2 - a + a_3 - a = 0$. Ainsi, $a = \frac{1}{3}(x_1 + x_2 + x_3)$ puis $y = (x_1 - a, x_2 - a, x_3 - a)$.

Rédaction (Synthèse):

Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Posons $a = \frac{1}{3}(x_1 + x_2 + x_3)$ et $y = (x_1 - a, x_2 - a, x_3 - a)$, on a bien $x = y + a(1, 1, 1), y \in F$ et $a(1, 1, 1) \in G$.

Finalement, on a bien prouvé que $\mathbb{R}^3 \subset F + G$ et donc $\mathbb{R}^3 = F + G$.

Exercice. Dans \mathbb{R}^3 , on considère les deux sous-espaces vectoriels:

$$F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$$
 et $H = Vect(1, 0, 0)$

Montrer que $\mathbb{R}^3 = F \oplus G$.

Remarque. Comme on le voit dans le dernier exemple, un sous-espace vectoriel a en général plusieurs supplémentaires dans E. On parle donc d'un supplémentaire et non du supplémentaire.

Exemple. On a $\mathcal{F}(\mathbb{R}, \mathbb{R}) = \mathcal{P} \oplus \mathcal{I}$. On le démontre par analyse-synthèse. A faire.

3 Familles finies de vecteurs

3.1 Familles libres

Définition.

Soit $(x_1,...,x_n)$ des éléments d'un \mathbb{K} -espace vectoriel E. On dit que $(x_1,...,x_n)$ est une **famille libre** (ou que les vecteurs $x_1,...,x_n$ sont **linéairement indépendants**) si :

$$\forall (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, \quad \left(\sum_{i=1}^n \lambda_i x_i = 0 \implies (\forall i \in [|1, n|], \ \lambda_i = 0)\right)$$

Dans le cas contraire, on dit que la famille (x_1, \ldots, x_n) est **liée** (ou que les vecteurs x_1, \ldots, x_n sont **linéairement dépendants**).

Remarques.

- Une famille composée d'un vecteur non nul est libre.
- Une famille composée de deux vecteurs non colinéaires est libre.
- Une famille contenant le vecteur nul est liée.

Exemples.

• Dans le \mathbb{R} -espace vectoriel \mathbb{C} , la famille (1,i) est libre, puisque pour tout $(a,b) \in \mathbb{R}^2$, on a :

$$a + ib = 0 \implies a = b = 0.$$

En revanche, dans le \mathbb{C} -espace vectoriel \mathbb{C} , la famille (1,i) est liée puisque i.1+(-1).i=0.

• La famille $(1, X, ..., X^n)$ est une famille libre de $\mathbb{K}_n[X]$ puisque si $\lambda_0, \lambda_1, ..., \lambda_n$ sont des scalaires vérifiant $\sum_{i=1}^n \lambda_i X^i = 0$ alors, ils sont tous nuls.

Exemple. Soit $x_1 = (1, 1, 1)$, $x_2 = (1, 2, -1)$ et $x_3 = (-1, 1, 1)$ des vecteurs de \mathbb{R}^3 . Montrons que (x_1, x_2, x_3) est une famille libre de \mathbb{R}^3 .

Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ tel que $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$.

Cette relation est équivalente à un système homogène de trois équations à trois inconnues de matrice :

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

Les opérations élémentaires $L_2 \longleftarrow L_2 - L_1$ et $L_3 \longleftarrow L_3 - L_1$ donnent la matrice :

$$A_1 = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & -2 & 2 \end{pmatrix}$$

Enfin, $L_3 \leftarrow L_3 + 2L_2$ donne $A_2 = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 6 \end{pmatrix}$ Comme cette dernière matrice est triangulaire

supérieure avec des coefficients diagonaux non nuls, A_2 est inversible et le système homogène ne possède que la solution nulle. La famille est donc libre.

Exercice. Montrer que (sin, cos) est un famille libre de $\mathbb{R}^{\mathbb{R}}$.

Soit $\lambda, \mu \in \mathbb{R}$ tels que $\lambda \cos + \mu \sin = 0$. Ceci se réécrit :

$$\forall x \in \mathbb{R}, \ \lambda \cos(x) + \mu \sin(x) = 0$$

En évaluant en x=0 (resp. $x=\frac{\pi}{2}$), on obtient : $\lambda=0$ (resp. $\mu=0$). On a donc $(\lambda,\mu)=(0,0)$, et la famille (sin, cos) est donc libre.

Soit $(x_1,...,x_n)$ une famille libre d'éléments de E. Pour tout $(\lambda_1,...,\lambda_n) \in \mathbb{K}^n$ et $(\mu_1,...,\mu_n) \in \mathbb{K}^n$, on a :

$$\left(\sum_{i=1}^{n} \lambda_i x_i = \sum_{i=1}^{n} \mu_i x_i\right) \implies \left(\forall i \in [|1, n|], \ \lambda_i = \mu_i\right)$$

Preuve. Immédiat puisque
$$\sum_{i=1}^{n} (\lambda_i - \mu_i) e_i \implies (\forall i \in [|1, n|], \ \lambda_i = \mu_i).$$

Définition.

On dit qu'une famille de polynômes de $\mathbb{K}[X]$ (P_0,\ldots,P_n) est de degrés échelonnés si $d^{\circ}P_0<\cdots<$ $d^{\circ}P_{n}$.

– Propriété 14 —

Une famille de polynôme de degrés échelonnés de polynômes non nuls est libre.

Preuve. Soit $(\lambda_0, \ldots, \lambda_n) \in \mathbb{K}^{n+1}$ tel que

$$\lambda_0 P_0 + \dots + \lambda_n P_n = 0.$$

Notons $d_n = \deg(P_n)$. On obtient en identifiant les coefficients en X^{d_n} :

$$\lambda_n CD(P_n) = 0 \quad \Rightarrow \quad \lambda_n = 0 \text{ car } CD(P_n) \neq 0.$$

On obtient $\lambda_0 P_0 + \cdots + \lambda_{n-1} P_{n-1} = 0$. En répétant cet argument, on trouve successivement $\lambda_{n-1} = 0$ $\lambda_{n-2} = \cdots = \lambda_0 = 0$. Donc (P_0, \ldots, P_n) est libre.

Exemple. $(1, X + 1, X^3 - X)$ est une famille de polynômes de degrés échelonnés. C'est donc une famille libre de $\mathbb{R}[X]$.

- Propriété 15 —

Si (x_1, \ldots, x_n) est liée, l'un des vecteurs x_i s'exprime comme combinaison linéaire des autres.

Preuve. Comme (x_1, \ldots, x_n) est liée, il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n \setminus \{(0, \ldots, 0)\}$ tel que $\sum_{i=1}^n \lambda_i \cdot x_i = 0$. Comme $(\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)$, il existe $k \in [|1, n|]$ tel que $\lambda_k \neq 0$. On a alors $x_k = -\frac{1}{\lambda_k} \sum_{i \neq k} \lambda_i x_i$ et x_k est combinaison linéaire de $(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n)$.

Remarque. On déduit de la propriété précédente qu'une famille de trois vecteurs non coplanaires est libre : en effet si (e_1, e_2, e_3) est liée, alors par exemple e_1 appartient à $Vect(e_2, e_3)$ et les trois vecteurs seraient coplanaires.

Attention. Une famille de trois vecteurs (e_1, e_2, e_3) deux à deux non colinéaires n'est pas forcément libre (prendre par exemple ((1,-1,0),(0,1,-1),(-1,0,1))).

- Toute sous-famille d'une famille libre est encore libre.
 Toute sur-famille d'une famille liée est liée.

Preuve.

- (1) Soit (x_1, \ldots, x_n) une famille libre, et L une sous-famille de (x_1, \ldots, e_n) . Quitte à réarranger les termes, on peut supposer que $L=(x_1,\ldots,x_p)$ avec $p\in[|1,n|]$. Soit $(\lambda_1,\ldots,\lambda_p)\in\mathbb{K}^p$ tel que $\sum_{i=1}^{p} \lambda_i \cdot x_i = 0. \text{ Pour } j \in [|p+1,n|], \text{ on pose } \lambda_j = 0, \text{ de sorte que } \sum_{i=1}^{n} \lambda_i x_i = 0. \text{ Comme } (x_1, \dots, x_n) \text{ est libre, on en déduit que } \lambda_1 = \dots = \lambda_n = 0 \text{ et donc } (x_1, \dots, x_p) \text{ est libre.}$
- (2) C'est la contraposée du résultat précédent.

Soient $(x_1,x_2,...,x_n)$ une famille libre d'éléments de E et $x\in E$. On a : $(x_1,...,x_n,x) \text{ est liée} \quad \Leftrightarrow \quad x\in Vect(x_1,x_2,...,x_n).$

$$(x_1,...,x_n,x)$$
 est liée \Leftrightarrow $x \in Vect(x_1,x_2,...,x_n)$.

Preuve.

- \Leftarrow Supposons $x \in Vect(x_1, x_2, ..., x_n)$. Il existe $\lambda_1, \lambda_2, ..., \lambda_n$ tels que $x = \sum_{i=1}^n \lambda_i x_i$. On a alors : $1.x + \sum_{i=1}^{n} (-\lambda_i)x_i = 0.$ et par suite, la famille $(x_1, x_1, ..., x_n, x)$ est liée.
- \Rightarrow Supposons la famille $(x_1,...,x_n,x)$ liée. Alors, on a :

$$\exists (\lambda_1, \dots, \lambda_n, \alpha) \in \mathbb{K}^n \setminus \{(0, \dots, 0, 0)\}, \quad \sum_{i=1}^n \lambda_i e_i + \alpha x = 0.$$

Supposons que $\alpha = 0$, alors $\sum_{i=1}^{n} \lambda_i e_i = 0$ donc $\lambda_1 = \cdots = \lambda_n = 0$ car (x_1, \ldots, x_n) est libre... absurde!

Ainsi on a $\alpha \neq 0$, et alors $x = -\frac{1}{\alpha} \sum_{i=1}^{n} \lambda_i x_i \in Vect(x_1, x_2, ..., x_n)$.

Remarque. On en déduit en particulier que si $(x_1, x_2, ..., x_n)$ est libre, alors :

$$(x_1,...,x_n,x)$$
 est libre $\Leftrightarrow x \notin Vect(x_1,x_2,...,x_n)$.

3.2 Familles génératrices

Définition.

Une famille $(x_1, x_2, ..., x_n)$ de vecteurs d'un \mathbb{K} -espace vectoriel E est dite génératrice de E si $Vect(x_1, x_2, ..., x_n) = E$, c'est à dire :

$$\forall x \in E, \quad \exists (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, \quad x = \sum_{i=1}^n \lambda_i x_i.$$

Exemples.

- 1. La famille (1,i) est une famille génératrice de \mathbb{C} en tant que \mathbb{R} espace vectoriel.
- 2. La famille (1) est une famille génératrice de \mathbb{C} en tant que \mathbb{C} espace vectoriel.
- 3. Si $n \in \mathbb{N}$, alors $(1, X, ..., X^n)$ est une famille génératrice de $\mathbb{K}_n[X]$ puisque pour tout polynôme P de degré au plus n, il existe $(p_0, p_1, ..., p_n) \in \mathbb{K}^{n+1}$ tel que $P = \sum_{i=1}^n p_i X^i$.

Exercice. Montrer que la famille ((1,2,3),(1,1,0),(0,1,1),(3,2,1)) est génératrice dans \mathbb{R}^3 . Est-elle libre ?

Propriété 18

Soit \mathcal{F} une famille d'éléments de E et soit \mathcal{F} une famille génératrice de E. La famille \mathcal{G} est génératrice de E si et seulement si tout élément de \mathcal{F} est combinaison linéaire des éléments de \mathcal{G} .

Remarque. En particulier, toute sur famille d'une famille génératrice est génératrice.

Preuve.

- \Rightarrow Supposons \mathcal{G} génératrice de E. Tout vecteur de E est alors combinaison linéaire des éléments de \mathcal{G} , et en particulier tout vecteur de \mathcal{F} .
- \Leftarrow Réciproquement, supposons que tout élément de \mathcal{F} soit combinaison linéaire des éléments de \mathcal{G} . Alors, tout élément de \mathcal{F} appartient à $Vect(\mathcal{G})$ et donc $Vect(\mathcal{F}) \subset Vect(\mathcal{G})$. Comme $Vect(\mathcal{F}) = E$, on en déduit que $E \subset Vect(\mathcal{G})$ et donc $E = Vect(\mathcal{G})$.

Exemple. Montrons que (1,j) engendre le \mathbb{R} -espace vectoriel \mathbb{C} . On a $j=e^{2i\pi/3}=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$. Comme (1,i) engendre \mathbb{C} et que tout élément de (1,i) est combinaison linéaire des éléments de (1,j) puisque :

$$1 = 1.1 + 0.j$$
 et $i = \frac{1}{\sqrt{3}}.1 + \frac{2}{\sqrt{3}}.j$

3.3 Bases

Définition.

Une famille (e_1, \ldots, e_n) d'un \mathbb{K} -espace vectoriel E est une **base de** E si c'est une famille libre et génératrice de E.

– Propriété 19 –

Une famille $\mathcal{B} = (e_1, \dots, e_n)$ d'un \mathbb{K} espace vectoriel E est une base de E si et seulement si tout vecteur de E s'écrit de manière unique comme combinaison linéaire d'éléments de \mathcal{B} .

Preuve. L'existence d'une décomposition équivaut à dire que \mathcal{B} est génératrice de E. L'unicité équivaut à la liberté de \mathcal{F} .

Définition.

Soient E un \mathbb{K} -espace vectoriel et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

- On appelle coordonnées de x en base \mathcal{B} l'unique n-uplet $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n \lambda_i e_i$.
- On appelle matrice colonne de x en base \mathcal{B} et on note $M_{\mathcal{B}}(x)$ le vecteur colonne $\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$ des coordonnées de x en base \mathcal{B} .

Exemple. (1,i) est une base du \mathbb{R} -espace vectoriel \mathbb{C} .

Exercice. Dans \mathbb{R}^3 , on pose $v_1 = (0, 1, 1), v_2 = (1, 0, 1), v_3 = (1, 1, 0)$. Montrer que (v_1, v_2, v_3) est une base de \mathbb{R}^3 , et préciser les coordonnées d'un vecteur v = (x, y, z) dans cette base.

Base canonique de \mathbb{K}^n .

Dans \mathbb{K}^n , on pose :

$$e_1 = (1, 0, 0, \dots, 0)$$
 , ... , $e_i = (0, \dots, 0, \frac{1}{i^{eme} \text{ position}}, 0, \dots, 0)$, ... , $e_n = (0, 0, \dots, 0, 1)$

La famille (e_1, \ldots, e_n) est une base de \mathbb{K}^n , appelée la base canonique de \mathbb{K}^n .

Base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$.

Pour tout $1 \le i \le n$ et $1 \le j \le p$, on note $E_{i,j}$ la matrice élémentaire de $\mathcal{M}_{n,p}(\mathbb{K})$ d'indice $(i,j): E_{i,j}$ est la matrice n'ayant que des 0, sauf un 1 en position (i,j).

La famille $(E_{i,j})_{1\leq i\leq n,1\leq j\leq p}$ est une base de $\mathcal{M}_{n,p}(\mathbb{K})$, dite base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$.

Base canonique de $\mathbb{K}_n[X]$.

Dans $\mathbb{K}_n[X]$, $(1, X, \dots, X^n)$ est une base (dite base canonique de $\mathbb{K}_n[X]$).

Propriété 20

Soient F et G deux sous-espaces vectoriels de E, $(e_1, \ldots, e_p) \in F^p$ et $(f_1, \ldots, f_q) \in G^q$ des familles de vecteurs de F et G.

- (1) Si (e_1, \ldots, e_p) et (f_1, \ldots, f_q) sont libres et si F+G est directe, alors $(e_1, \ldots, e_p, f_1, \ldots, f_q)$ est libre.
- (2) Si (e_1, \ldots, e_p) et (f_1, \ldots, f_q) sont génératrices (de F et G respectivement) et si F + G = E, alors $(e_1, \ldots, e_p, f_1, \ldots, f_q)$ est génératrice de E.
- (3) Si (e_1, \ldots, e_p) et (f_1, \ldots, f_q) sont des bases de F et G respectivement et si $F \oplus G = E$, alors $(e_1, \ldots, e_p, f_1, \ldots, f_q)$ est une base de E. Cette base est dite **adaptée à la somme** directe $E = F \oplus G$.

Preuve.

(1) Soient $(\lambda_1, \ldots, \lambda_p) \in \mathbb{K}^p$ et $(\mu_1, \ldots, \mu_q) \in \mathbb{K}^q$ tels que

$$\sum_{i=1}^{p} \lambda_{i} e_{i} + \sum_{j=1}^{q} \mu_{j} f_{j} = 0.$$

On a donc:

$$\sum_{i=1}^{p} \lambda_i e_i = -\sum_{j=1}^{q} \mu_j f_j \underset{F \cap G = \{0\}}{\Longrightarrow} \sum_{i=1}^{p} \lambda_i e_i = \sum_{j=1}^{q} \mu_j f_j = 0$$

On en déduit que $\lambda_i = 0 = \mu_j$ pour tout i, j car (e_1, \dots, e_p) et (f_1, \dots, f_q) sont libres.

(2) Puisque $F = Vect(e_1, \dots e_p)$ et $G = Vect(f_1, \dots, f_q)$, on obtient :

$$E = F + G = Vect(e_1, \dots, e_p) + Vect(f_1, \dots, f_q) = Vect(e_1, \dots, e_p, f_1, \dots, f_q).$$

Donc $(e_1, \ldots, e_p, f_1, \ldots, f_q)$ est une famille génératrice de E.

(3) Le dernier point vient directement des deux précédents.

Exemple. Soient

$$F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$$
 et $G = Vect((1, 1, 1)).$

- Le vecteur $e_3 = (1, 1, 1)$ engendre G et est non nul. Donc (e_3) est une base de G.
- On a montré que $F = Vect(e_1 = (1, 0, -1), e_2 = (0, 1, -1))$. Donc (e_1, e_2) est une famille génératrice de F. Comme c'est une famille de deux vecteurs non colinéaires, elle est également libre. Ainsi (e_1, e_2) est une base de F.
- On a montré que $\mathbb{R}^3 = F \oplus G$. On déduit de la propriété précédente que (e_1, e_2, e_3) est une base de \mathbb{R}^3 .

Soit $(e_1, \ldots, e_n) \in E^n$. Soit $k \in [|1, n|]$ et posons $F = Vect(e_1, \ldots, e_k)$ et $G = Vect(e_{k+1}, \ldots, e_n)$.

(1) Si (e_1, \ldots, e_n) est une famille libre, F + G est directe.

(2) Si (e_1, \ldots, e_n) est une famille génératrice de E, F + G = E.

- (3) Si (e_1, \ldots, e_n) est une base de E, F et G sont supplémentaires dans E.

Preuve.

(1) Soit $x \in F \cap G$. Alors:

$$x \in F \quad \Rightarrow \quad \exists (\lambda_1, \dots, \lambda_k) \in \mathbb{K}^k, x = \sum_{i=1}^k \lambda_i e_i.$$

$$x \in G \quad \Rightarrow \quad \exists (\mu_{k+1}, \dots, \mu_n) \in \mathbb{K}^{n-k}, x = \sum_{i=k+1}^n \mu_i e_i.$$

On a alors

$$\sum_{i=1}^{k} \lambda_i e_i + \sum_{i=k+1}^{n} (-\mu_i) e_i = 0.$$

Comme la famille (e_1,\ldots,e_n) est libre, on en déduit que $\lambda_i=0=\mu_j$ pour tout i,j. Ainsi $x = \sum_{i=1}^{k} \lambda_i e_i = 0 \text{ et } F \cap G = \{0\}.$

(2) Soit $x \in E$. Comme (e_1, \ldots, e_n) est génératrice, il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que :

$$x = \underbrace{\lambda_1 e_1 + \dots + \lambda_k e_k}_{=:y} + \underbrace{\lambda_{k+1} e_{k+1} + \dots + \lambda_n e_n}_{=:z}.$$

On a $y \in F$, $z \in G$ et y + z = x. Ainsi $x \in F + G$ et E = F + G.

(3) Le troisième point est conséquence de deux précédents.