Interrogation de cours 22 du Mardi 29 Mars 2016

Nom et prénom:

1. (/ 1 points) Compléter :

- $\dim(E \times F) =$
- $\dim(E+F) =$

2. (/ **2 points**) Soit $\mathcal{F} = (e_1, \dots, e_p)$ une famille de vecteurs d'un espace E de dimension n. Compléter :

• $rg(\mathcal{F}) =$

• $rg(\mathcal{F}) = p \Leftrightarrow$

• $rq(\mathcal{F}) <$

• $rg(\mathcal{F}) = n \Leftrightarrow$

3. (/ 1 points) Donner deux caractérisations de $E = F \oplus G$ à l'aide de la dimension.

$$E = F \oplus G \Leftrightarrow$$

 \Leftrightarrow

4. (/ 1 points)

- La famille $(e_1 = (1, 1, 1), e_2 = (1, 2, 3))$ est elle une base de \mathbb{R}^3 ?
- La famille $(e_1 = (1, 1, 1), e_2 = (1, 2, 3), e_3 = (1, 4, 6))$ est elle une base de \mathbb{R}^3 ?

PCSI 5 Note /5

Interrogation de cours 22 du Mardi 29 Mars 2016

Nom et prénom:

5. (/ 1 points) Compléter :

- $\dim(E \times F) =$
- $\bullet \ \dim(E+F) =$

6. (/ **2 points**) Soit $\mathcal{F} = (e_1, \dots, e_p)$ une famille de vecteurs d'un espace E de dimension n. Compléter :

• $rg(\mathcal{F}) =$

• $rg(\mathcal{F}) = p \Leftrightarrow$

• $rg(\mathcal{F}) \leq$

• $rg(\mathcal{F}) = n \Leftrightarrow$

7. (/ 1 points) Donner deux caractérisations de $E=F\oplus G$ à l'aide de la dimension.

$$E = F \oplus G \Leftrightarrow$$

 \Leftrightarrow

8. (/ 1 points)

- La famille $(e_1 = (1, 1, 1), e_2 = (1, 2, 3))$ est elle une base de \mathbb{R}^3 ?
- La famille $(e_1 = (1, 1, 1), e_2 = (1, 2, 3), e_3 = (1, 4, 6))$ est elle une base de \mathbb{R}^3 ?