- DS9

Devoir surveillé du 04/06/16

Durée: 4h

La qualité de la rédaction, la clarté et la précision des raisonnements interviendront pour une part importante dans l'appréciation des copies. Les résultats doivent être encadrés.

Exercice 1 On définit $\Delta_1 = 1$, $\Delta_2 = \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix}$ et pour tout $n \geq 2$:

$$\Delta_n = \begin{vmatrix} 1 & -3 & 0 & \cdots & \cdots & 0 \\ 2 & 1 & -3 & \ddots & & \vdots \\ 0 & 2 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & -3 \\ 0 & \cdots & \cdots & \cdots & 0 & 2 & 1 \end{vmatrix}$$

- a) Déterminer une relation de récurrence entre Δ_{n+2} , Δ_{n+1} et Δ_n .
- b) Pour tout $n \in \mathbb{N}^*$, exprimer Δ_n en fonction de n.

Problème 1.

Si A et U sont deux éléments de $\mathcal{M}_n(\mathbb{R})$ (où $n \in \mathbb{N}^*$), on dit que la matrice $U \in \mathcal{M}_n(\mathbb{R})$ est un **pseudo-inverse** de la matrice A si les trois relations suivantes sont vérifiées :

- (1) AUA = A
- (2) UAU = U
- (3) UA = AU

Le but de ce problème est de caractériser l'existence d'un pseudo-inverse pour une matrice carrée donnée, et d'obtenir une méthode de calcul lorsqu'il existe.

Préliminaires.

- 1. Soit P une matrice inversible de $\mathcal{M}_n(\mathbb{R})$. Montrer que P admet un pseudo-inverse que l'on explicitera.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ où $n \in \mathbb{N}^*$. On suppose que A admet un pseudo-inverse. Soit $P \in GL_n(\mathbb{R})$. Montrer que $P^{-1}AP$ admet un pseudo-inverse.

1

PCSI5 Lycée Saint Louis

Partie I. Étude d'un exemple.

Dans cette partie, n = 3. On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On définit $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{pmatrix}$ et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A.

- 1. Soit $(x, y, z) \in \mathbb{R}^3$. Déterminer f(x, y, z).
- 2. Déterminer une base de Ker f ainsi que sa dimension.
- 3. La matrice A est-elle inversible? Préciser le rang de A.
- 4. On pose

$$f_1 = (0, 1, 2), \quad f_2 = (1, 2, 3), \quad f_3 = (1, -1, 1)$$

et on note C la famille (f_1, f_2, f_3) .

- (a) Montrer que \mathcal{C} est une base de \mathbb{R}^3 .
- (b) Montrer que (f_1, f_2) est une base de Im f, puis que Im f et Ker f sont supplémentaires.
- (c) Écrire la matrice de passage P de la base \mathcal{B} à la base \mathcal{C} . Calculer son inverse.
- (d) Déterminer A', la matrice de f dans la base C.

On trouvera une matrice de la forme $A' = \begin{pmatrix} \alpha & \beta & 0 \\ \gamma & \delta & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (où α , β , γ , δ sont des réels que l'on explicitera), et l'on posera $A_1 = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$.

- 5. Justifier que A_1 est inversible et calculer son inverse noté $A_1^{-1} = \begin{pmatrix} \alpha' & \beta' \\ \gamma' & \delta' \end{pmatrix}$ (où α' , β' , γ' et δ' sont des réels que l'on explicitera).
- 6. Montrer que la matrice $U' = \begin{pmatrix} \alpha' & \beta' & 0 \\ \gamma' & \beta' & 0 \\ 0 & 0 & 0 \end{pmatrix}$ est un pseudo-inverse de la matrice A'.
- 7. Déterminer alors un pseudo inverse U de la matrice A que l'on exprimera en fonction de matrices définies auparavant dans cette partie.
- 8. Notons π l'endomorphisme canoniquement associé à UA.
 - (a) Déterminer la matrice de π dans la base \mathcal{C} .
 - (b) En déduire la nature et les éléments caractéristiques de π

Partie II. Unicité du pseudo-inverse.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ où $n \geq 1$. on suppose que A admet deux pseudo-inverses U et U'.

- 1. En calculant le produit AUAU' de deux manières différentes, montrer : UA = AU'.
- 2. En déduire que U = U'.

On a ainsi prouvé que le pseudo-inverse est unique. On pourra donc parler du pseudo-inverse.

2

Partie III. Condition d'existence du pseudo-inverse.

Dans cette partie, A désigne un élément de $\mathcal{M}_n(\mathbb{R})$ (avec $n \geq 2$), et f désigne l'endomorphisme de \mathbb{R}^n canoniquement associé à la matrice A.

- 1. Dans cette question seulement, on suppose que A admet un pseudo-inverse U. Ainsi, on a :
 - (1) AUA = A
 - (2) UAU = U
 - (3) UA = AU

et l'on désigne par g l'endomorphisme de \mathbb{R}^n canoniquement associé à la matrice U.

- (a) Montrer que $(AU)^2 = AU$. Que peut-on en déduire quant à la nature de l'endomorphisme $f \circ g$?
- (b) i. Montrer que $\operatorname{Ker} f = \operatorname{Ker} f \circ g$.
 - ii. Montrer que $\operatorname{Im} f = \operatorname{Im} f \circ g$
- (c) En déduire que $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont supplémentaires.
- 2. Dans cette question seulement, on suppose que $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont deux sous-espaces vectoriels supplémentaires de \mathbb{R}^n
 - (a) Montrer que, dans chacun des deux cas où $\operatorname{Ker}(f)$ ou $\operatorname{Im}(f)$ est réduit au vecteur nul, alors la matrice A admet un pseudo-inverse que l'on déterminera. On suppose donc, dans la suite de cette question, que ni $\operatorname{Ker}(f)$ ni $\operatorname{Im}(f)$ n'est réduit au vecteur nul.
 - (b) Montrer que $\mathrm{Im} f$ est stable par f et que $\tilde{f}: \begin{array}{ccc} \mathrm{Im} f & \to & \mathrm{Im} f \\ x & \mapsto & f(x) \end{array}$ est un automorphisme.
 - (c) Montrer l'existence d'une base $C = (f_1, ..., f_n)$ de \mathbb{R}^n et un entier $r \in [|1, n-1|]$ tels que la matrice A' de f dans la base C soit de la forme

$$A' = \operatorname{Mat}_{\mathcal{C}}(f) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,r} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{r,1} & \cdots & a_{r,r} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

la matrice $A_1 = \begin{pmatrix} a_{1,1} & \cdots & a_{1,r} \\ \vdots & & \vdots \\ a_{r,1} & \cdots & a_{r,r} \end{pmatrix}$ étant elle même inversible.

- (d) Démontrer que la matrice A' admet un pseudo-inverse que l'on explicitera à l'aide de A_1 .
- (e) Montrer finalement que la matrice A admet un pseudo-inverse.
- 3. Énoncer une condition nécessaire et suffisante sur A pour que A admette un pseudo-inverse.

Problème 2. Étude d'un procédé de sommation

Notations et rappels.

Pour tout entier naturel n, on note :

- n! la factorielle de n avec la convention 0! = 1,
- [0, n] l'ensemble des entiers naturels k vérifiant $0 \le k \le n$,

On rappelle:

- la valeur de $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ pour $k \in [|0,n|]$,
- la formule du binôme de Newton: si z_1 et z_2 sont des nombres complexes et n un entier naturel, alors

$$(z_1 + z_2)^n = \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{n-k}$$

A toute suite complexe $(a_n)_{n\in\mathbb{N}}$, on associe la suite $(a_n^*)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k$$

L'objet de ce problème est de comparer les propriétés de la série $\sum_{n\geq 0} a_n^*$ aux propriétés de la série

$$\sum_{n>0} a_n.$$

Partie I. Étude de deux exemples

1. Cas d'une suite constante.

Soit $\alpha \in \mathbb{C}^*$. On suppose que la suite $(a_n)_{n \in \mathbb{N}}$ est définie par : pour tout $n \in \mathbb{N}$, $a_n = \alpha$.

- (a) Expliciter $\sum_{k=0}^{n} \binom{n}{k}$ pour $n \in \mathbb{N}$.
- (b) Expliciter a_n^* pour $n \in \mathbb{N}$.
- (c) La série $\sum_{n\geq 0} a_n$ (resp. $\sum_{n\geq 0} a_n^*$) est-elle convergente ?
- 2. Cas d'une suite géométrique.

Soit $z \in \mathbb{C}$; on suppose que la suite $(a_n)_{n \in \mathbb{N}}$ est définie par : pour tout $n \in \mathbb{N}, \ a_n = z^n$.

- (a) Exprimer a_n^* en fonction de z et n.
- (b) On suppose que |z| < 1.
 - i. Justifier la convergence de la série $\sum_{n\geq 0} a_n$ et expliciter sa somme $A(z) = \sum_{n=0}^{\infty} a_n$. On redémontrera le résultat de cours.
 - ii. Justifier la convergence de la série $\sum_{n\geq 0} a_n^*$ et expliciter sa somme $\sum_{n=0}^{\infty} a_n^*$ en fonction de A(z).

- (c) On suppose que $|z| \ge 1$.
 - i. Quelle est la nature (convergente ou divergente) de la série $\sum_{n>0} a_n$?
 - ii. Quelle est la nature de $\sum_{n\geq 0} a_n^*$ si z=-2 ?
 - iii. On suppose $z=e^{i\theta},$ avec θ réel tel que $0<|\theta|<\pi.$ Montrer que la série $\sum_{n\geq 0}a_n^*$ est convergente.

Calculer la partie réelle et la partie imaginaire de la somme $\sum_{n=0}^{\infty} a_n^*$.

Partie II: Étude du procédé de sommation

Dans cette partie, et pour simplifier, on suppose que $(a_n)_{n\in\mathbb{N}}$ est à valeurs réelles.

- 1. Comparaison des convergences des deux suites.
 - (a) Soit $n \in \mathbb{N}^*$, on considère un entier k fixé, $k \in [|0, n|]$.
 - i. Justifier que $\binom{n}{k} \underset{n \to +\infty}{\sim} \frac{n^k}{k!}$.
 - ii. En déduire la limite de $\frac{1}{2^n} \binom{n}{k}$ lorsque n tend vers $+\infty$.
 - (b) Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle et n_0 un entier naturel <u>fixé</u>.

On considère pour $n > n_0$, la somme $S_{n_0}(n) = \sum_{k=0}^{n_0} \binom{n}{k} \frac{a_k}{2^n}$. Quelle est la limite de $S_{n_0}(n)$ lorsque l'entier n tend vers $+\infty$?

(c) On suppose que a_n tend vers 0 lorsque n tend vers $+\infty$. Montrer que a_n^* tend vers 0 lorsque n tend vers $+\infty$.

On pourra utiliser la définition de la limite.

- (d) On suppose que a_n tend vers l (limite finie) lorsque n tend vers $+\infty$. Quelle est la limite de a_n^* lorsque n tend vers $+\infty$?
- (e) La convergence de la suite $(a_n)_{n\in\mathbb{N}}$ est-elle équivalente à la convergence de la suite (a_n^*) ?
- 2. Comparaison des convergences des séries $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} a_n^*$.

Pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=0}^n a_k$, $T_n = \sum_{k=0}^n a_k^*$, $U_n = 2^n T_n$.

- (a) Pour $n \in [0, 2]$, exprimer U_n comme combinaison linéaire des sommes S_k .
- (b) Montrer par récurrence sur l'entier n que :

$$\forall n \in \mathbb{N}, \ U_n = \sum_{k=0}^n \binom{n+1}{k+1} S_k$$

(on pourra remarquer que pour tout $k \in [[0, n]]$, $a_k = S_k - S_{k-1}$ avec la convention $S_{-1} = 0$).

3. On suppose que la série $\sum_{n\geq 0} a_n$ est convergente.

Pour tout $k \in \mathbb{N}^*$, on note $v_k = S_{k-1}$ et $v_0 = S_{-1} = 0$.

(a) Montrer que : $\forall n \in \mathbb{N}^*, \ U_{n-1} = 2^n v_n^*.$

- (b) Montrer que la série $\sum_{n\geq 0} a_n^*$ est convergente et exprimer la somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de la somme $\sum_{n=0}^{+\infty} a_n$.
- 4. La convergence de la série $\sum_{n\geq 0}a_n$ est-elle équivalente à la convergence de la série $\sum a_n^*$?