DS5

Devoir surveillé du 23/01/15

La calculatrice est interdite. Durée: 3h

La qualité de la rédaction, la clarté et la précision des raisonnements interviendront pour une part importante dans l'appréciation des copies. Les résultats doivent être encadrés.

Exercice 1

Soit E un ensemble fini de cardinal $n \in \mathbb{N}$. Calculer $\sum_{X \in \mathcal{P}(E)} 5^{Card(X)}$.

Exercice 2

Soit $n \geq 2$.

1. Montrer que :

$$pgcd(2^{8n} - 3^{2n} + 13, 2^{4n} - 3^n) = pgcd(2^{4n} - 3^n, 13).$$

- 2. Montrer que 13 divise $2^{4n} 3^n$.
- 3. En déduire la valeur de :

$$pgcd(2^{8n} - 3^{2n} + 13, 2^{4n} - 3^n).$$

Exercice 3

Soit E un ensemble fini de cardinal $n \in \mathbb{N}^*$. Soit $a \in E$.

Déterminer le nombre de couples $(X,Y) \in \mathcal{P}(E)^2$ tels que $X \subset Y \cup \{a\}$.

Exercice 4

On va répondre au problème suivant : Combien y-a-t-il de façons de monter un escalier de n marches en faisant des pas qui montent de 1 ou 2 marches de façon aléatoire. On appelle T_n ce nombre. On convient que $T_0 = 1$.

1. Étudier les cas n = 1, 2, 3, 4.

On se propose d'étudier le cas général de deux manières différentes.

- 2. On note i le nombre de pas de 2 marches.
 - (a) Expliquer pourquoi $0 \le i \le \lfloor \frac{n}{2} \rfloor$, $\lfloor \rfloor$ désignant la partie entière.
 - (b) i étant fixé. Combien y-a-t-il de pas à une marche? combien y-a-t-il de pas en tout?
 - (c) Combien y-a-t-il de façon de monter l'escalier de n marches sachant que l'on fait i pas de 2 marches ?
 - (d) Montrer que pour tout $n \in \mathbb{N}^*$, $T_n = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n-i}{i}$.
- 3. (a) En considérant la nature du premier pas, montrer :

$$\forall n \in \mathbb{N}, \ T_{n+2} = T_{n+1} + T_n.$$

(b) Calculer T_n en fonction de n.

PCSI5 Lycée Saint Louis

Exercice 5

Tout au long de ce problème, A désigne la matrice carrée d'ordre 3 à coefficients réels définir par :

$$A = \begin{pmatrix} -7 & 0 & -8 \\ 4 & 1 & 4 \\ 4 & 0 & 5 \end{pmatrix}$$

Partie I : Une première méthode de calcul des puissances de M.

On pose:

$$J = \frac{1}{4}(A + 3I_3).$$

- 1. Calculer J^2 . En déduire J^n pour tout $n \in \mathbb{N}$.
- 2. Soit n un entier naturel non nul. Déterminer une expression matricielle de A^n en fonction de n, I_3 et J.
- 3. Pour tout n appartenant à \mathbb{N} , en déduire une écriture matricielle de A^n ne faisant intervenir que l'entier n.

Partie II : Une seconde méthode de calcul des puissances de A.

1. On pose:

$$P = \begin{pmatrix} -2 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 & -1 \end{pmatrix}.$$

Montrer que P est inversible et déterminer P^{-1} .

- 2. Montrer que $P^{-1}AP = D$ avec $D = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- 3. Calculer, pour tout $n \in \mathbb{N}$, D^n . En déduire une écriture matricielle de A^n ne faisant intervenir que l'entier n.

Partie III: Étude du commutant.

Pour toute matrice $B \in \mathcal{M}_n(\mathbb{R})$, on note C(B) l'ensemble des matrices qui commutent avec B (appelé le commutant de la matrice B. Autrement dit :

$$C(B) = \{ M \in \mathcal{M}_n(\mathbb{R}) | BM = MB \}$$

- 1. Soit $B \in \mathcal{M}_n(\mathbb{R})$. On désire prouver quelques propriétés sur C(B).
 - (a) Donner deux éléments évidents de C(B).
 - (b) Montrer que, si M et M' sont dans C(B), et λ , μ des réels, alors $\lambda M + \mu M'$ est encore un élément de C(B). On dit que l'ensemble C(B) est stable par combinaison linéaire.
 - (c) Montrer que, si M et M' sont dans C(B), alors le produit MM' est encore un élément de C(B). On dit que l'ensemble C(B) est stable par produit matriciel.
 - (d) Déduire des questions précédentes que tout polynôme en B, c'est à dire toute matrice de la forme $\sum_{i=0}^k a_i B^i$ avec $k \geq 0$ et $a_0, \ldots, a_k \in \mathbb{R}$, est un élément de C(B).
 - (e) Montrer que, si M est dans C(B), et M inversible, alors son inverse M^{-1} est encore un élément de C(B). On dit que l'ensemble C(B) est stable par passage à l'inverse.
 - (f) Comparer ${}^tB \times B$ et $B \times {}^tB$ pour $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

L'ensemble C(B) est-il stable par transposition?

Quelle hypothèse peut-on faire sur B pour que cette propriété soit satisfaite?

- 2. Soit D une matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux λ_i sont supposés distincts deux à deux, et soit $M \in C(D)$.
 - (a) Interpréter les produits DM et MD en termes d'opérations élémentaires sur les lignes et les colonnes de la matrice M.
 - (b) Montrer que M est nécessairement une matrice diagonale.
 - (c) Conclure que C(D) est l'ensemble des matrices diagonales.
- 3. On s'intéresse désormais au commutant de la matrice A définie au tout début du problème et on utilisera les notations de la partie II.
 - (a) Prouver que pour toute matrice $M \in \mathcal{M}_3(\mathbb{R})$, on a l'équivalence suivante :

$$M \in C(A) \iff P^{-1}MP \in C(D)$$

- (b) Montrer que les éléments de C(D) sont exactement les matrices de la forme $\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{pmatrix}$ où a, b, c, d et e sont des réels.
- (c) En déduire C(A) comme combinaison linéaire de cinq matrices que l'on déterminera.

Exercice 6

1. Étude de f.

On considère la fonction $f: x \mapsto \frac{1}{x - \lfloor x \rfloor}$.

- (a) Déterminer l'ensemble de définition de f. Montrer que f est périodique de période 1.
- (b) Étudier f: on donnera en particulier une expression simplifiée de f sur tout intervalle de la forme]k, k+1[avec k entier puis on précisera ses variations, son ensemble image et on tracera son graphe dans un repère orthonormé.
- (c) Démontrer que pour tout nombre x irrationnel (resp. rationnel non entier) f(x) est irrationnel (resp. rationnel).

2. Une suite récurrente.

On pose $x_0 \in \mathbb{R}$ tel que $x_0 > 0$ et on s'intéresse lorsque cela est possible à la suite $(x_n)_{n \in \mathbb{N}}$ définie par la relation de récurrence

$$\forall n \in \mathbb{N}, x_{n+1} = f(x_n).$$

- (a) On suppose dans cette question que $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Démontrer que pour tout entier naturel n, x_n est bien défini.
- (b) On suppose dans cette question que $x_0 \in \mathbb{Q}$ et que pour tout entier naturel n, x_n est bien défini.

On considère u_0 et v_0 deux entiers $(u_0 \in \mathbb{N}, v_0 \in \mathbb{N}^*)$ tels que $x_0 = \frac{u_0}{v_0}$.

- i. Démontrer que pour tout entier naturel $n, x_n \in \mathbb{Q}$ et que pour $n \geq 1, x_n > 1$.
- ii. On définit par récurrence deux suites d'entiers $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ en posant, pour tout $n\geq 0,\ u_{n+1}=v_n$ et v_{n+1} égal au reste de la division euclidienne de u_n par v_n lorsque v_n est non nul et 0 sinon.

Démontrer que l'on a, pour tout entier naturel $n, v_n > 0$ et $x_n = \frac{u_n}{v_n}$.

iii. Démontrer que la suite (v_n) est strictement décroissante.

L'hypothèse de 3.b est-elle possible?

Que peut-on en conclure?

PCSI5 Lycée Saint Louis

(c) Énoncer une condition nécessaire et suffisante sur x_0 pour que, pour tout entier naturel n, x_n soit bien défini.

3. Le cas irrationnel.

On fixe dans toute cette partie $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ tel que $x_0 > 0$. On considère la suite $(x_n)_{n \in \mathbb{N}}$ définie dans la partie précédente.

- (a) On pose dans cette question $x_0 = \sqrt{2}$.
 - i. Calculer x_0 , x_1 et x_2 .
 - ii. Montrer que (x_n) est stationnaire.
- (b) On pose dans cette question $x_0 = \sqrt{3}$.
 - i. Calculer x_0 , x_1 , x_2 , x_3 et x_4 .
 - ii. Montrer que (x_{2n}) et (x_{2n+1}) sont stationnaires.