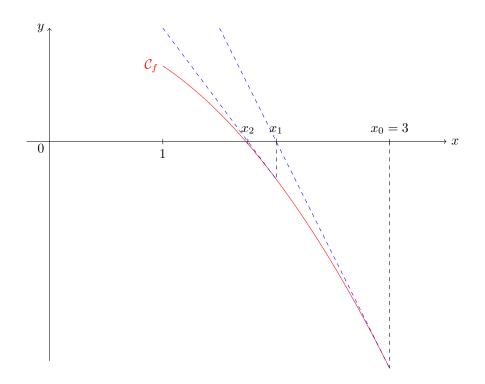
Correction du devoir maison

Exercice 1 (Méthode de Newton)

Partie I. Principe de la méthode de Newton.

- 1. On sait que f est continue sur [a,b] et $0 \in]f(b), f(a)[$. Ainsi, d'après le théorème des valeurs intermédiaires, il existe (au moins) une solution à l'équation f(x) = 0 dans]a,b[. De plus, f' est strictement négative donc f est strictement monotone donc f est injective et l'équation f(x) = 0 ne peut avoir plus d'une solution. Finalement, l'équation f(x) = 0 possède une unique solution dans]a,b[que l'on note α .
- 2. L'équation de la tangente à C_f au point d'abscisse $(x_0, f(x_0))$ est $y = f'(x_0)(x x_0) + f(x_0)$. Ainsi, l'abscisse x_1 du point d'intersection de l'axe abscisse et de cette tangente vérifie l'équation : $0 = f'(x_0)(x_1 - x_0) + f(x_0)$. D'où $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ car $f'(x_0)$ est non nul.

3. Exemple.



Partie II. Étude de la fonction g.

- 1. f et f' sont de classe \mathcal{C}^1 sur [a,b] car f est de classe \mathcal{C}^2 sur [a,b]. Ainsi, g est de classe \mathcal{C}^1 sur [a,b] en tant que différence et quotient de fonctions qui le sont, dont le dénominateur ne s'annule pas. De plus, pour tout $x \in [a,b]$, $g'(x) = 1 \frac{f'(x)^2 f(x)f''(x)}{f'(x)^2} = \frac{f(x)f''(x)}{f'(x)^2}$. On obtient ainsi, $g(\alpha) = \alpha \frac{f(\alpha)}{f'(\alpha)} = \alpha$ et $g'(\alpha) = \frac{f(\alpha)f''(\alpha)}{f'(\alpha)^2} = 0$.
- 2. (a) |f| et |f''| sont continue sur le segment [a,b] en tant que composée de fonctions continues (f) est de classe \mathcal{C}^2 sur [a,b] et la valeur absolue est continue sur \mathbb{R}). Ainsi, elles sont bornées et atteignent leur bornes. Ainsi, il existe $(c,d) \in [a,b]^2$ tel que pour tout $x \in [a,b]$, |f'(c)| < |f'(x)| et $|f''(x)| \le |f''(d)|$.

1

PCSI5 Lycée Saint Louis

> Comme, f' est strictement négative sur [a,b], on a |f'(c)| > 0. Posons m = |f'(c)|, on a bien $m \in \mathbb{R}_+^*$ et pour tout $x \in [a, b], |f'(x)| \ge m$. Posons M = 1 + |f''(d)|, on a $M \in \mathbb{R}_+^*$ et pour tout $x \in [a, b], |f''(x)| \leq M$.

- (b) On sait que f est de classe \mathcal{C}^1 sur [a,b]. Ainsi, f' est continue sur le segment [a,b] donc est bornée et atteint ses bornes. Ainsi, il existe $\beta \in [a,b]$ tel que pour tout $t \in [a,b], |f'(t)| \le$ $|f'(\beta)|$. Posons $L=|f'(\beta)|$. On a $M=|f'(\beta)|>0$ et pour tout $t\in[a,b], |f'(t)|\leq M$. D'après l'inégalité des accroissements finis, on en déduit que f est L lipschitzienne sur [a,b]. Ainsi, pour tout $t \in [a,b]$, $|f(t)-f(\alpha)| \leq L|t-\alpha|$ $(\alpha \in [a,b])$. Or, $f(\alpha)=0$. Ainsi, pour tout $t \in [a, b], |f(t)| \le L|t - \alpha|$.
- (c) Soit $x \in [a, b]$. D'après la question 1., on sait que pour tout $t \in [a, b]$, $g'(t) = \frac{f(t)f''(t)}{f'(t)^2}$. Ainsi, pour tout $t \in [a,b]$, $|g'(t)| = \left|\frac{f(t)f''(t)}{f'(t)^2}\right| \le \frac{|f(t)||f''(t)|}{|f'(t)|}$. Or, on sait que pour tout $t \in [a,b]$, $|f(t)| \le L|t-\alpha|$, $\frac{1}{|f'(t)|^2} \le \frac{1}{m^2}$ et $|f''(t)| \le M$, d'après les questions précédentes. Ainsi, pour tout $t \in [a, b], |g'(t)| \le \frac{ML}{m^2} |t - \alpha|.$

1er cas : si $x < \alpha$

Alors, pour tout $t \in [x, \alpha]$, on a $|t - \alpha| \le |x - \alpha|$ d'où pour tout $t \in [x, \alpha]$, $|g'(t)| \le \frac{ML}{m^2} |x - \alpha|$. D'après l'inégalité des accroissements finis appliquée à g sur $[x,\alpha]$, on obtient \vdots |g(x)| $|g(\alpha)| \leq \frac{ML}{m^2} |x - \alpha| \times (\alpha - x)$. Or, $g(\alpha) = \alpha$ donc l'inégalité se réécrit :

$$|g(x) - \alpha| \le \frac{ML}{m^2} |x - \alpha|^2$$

2ème cas : si $x > \alpha$

On procède de même, on obtient pour tout $t \in [\alpha, x], |g'(t)| \le \frac{ML}{m^2} |x - \alpha|$ puis

$$|g(x) - \alpha| \le \frac{ML}{m^2} |x - \alpha|^2$$

L'inégalité est également vraie pour $x=\alpha$

On a donc bien prouvé que : $|g(x) - \alpha| \le \frac{ML}{m^2} |x - \alpha|^2$.

(d) En posant $K = \frac{ML}{m^2} > 0$. On a d'après la question précédente que pour tout $x \in [a, b]$, $|g(x) - \alpha| \le K|x - \alpha|^2$ ce que l'on souhaitait prouver.

Partie III. Étude de la suite $(x_n)_{n\in\mathbb{N}}$.

- 1. (a) g est de classe \mathcal{C}^1 sur [a,b] et pour tout $x \in [a,b]$, $g'(x) = \frac{f(x)f''(x)}{f'(x)^2}$. De plus, f' est strictement négative. Ainsi, f est strictement décroissante sur [a,b]. De plus, $f(\alpha) = 0$. Ainsi, pour tout $x \in [a, \alpha[, f(x) > 0 \text{ et pour tout } x \in]\alpha, b], f(x) < 0$. Comme on suppose ici que f'' est strictement positive, on obtient que g'(x) > 0 pour tout $x \in [a, \alpha]$ et g'(x) < 0 pour tout $x \in [\alpha, b]$. Ainsi, q est strictement croissante sur $[a, \alpha]$ et strictement décroissante sur $[\alpha, b]$.
 - (b) Rédaction 1: On sait que g est continue et strictement croissante sur $[a, \alpha]$. Ainsi, $g([a, \alpha]) = [g(a), g(\alpha)] =$ $[g(a), \alpha]$. Or, $g(a) = a - \frac{f(a)}{f'(a)}$ et f(a) > 0, f'(a) < 0. Ainsi, $\frac{f(a)}{f'(a)} < 0$ d'où g(a) > a. Ainsi, $g([a, \alpha]) \subset [a, \alpha]$.

On peut donc conclure que $[a, \alpha]$ est stable par g et $x_0 \in [a, \alpha]$. Ainsi, (x_n) est bien définie et pour tout $n \in \mathbb{N}$, $x_n \in [a, \alpha]$.

Rédaction 2:

Montrons par récurrence que pour tout $n \in \mathbb{N}$, x_n est bien défini et que $x_n \in [a, \alpha]$. La propriété est vraie par hypothèse pour n = 0.

Soit $n \in \mathbb{N}$. Supposons que x_n existe et que $x_n \in [a, \alpha]$. Alors, $[a, \alpha] \subset [a, b]$ sur lequel g est définie. Ainsi, $g(x_n)$ donc x_{n+1} existe. $a \leq x_n \leq \alpha$ et g croissante sur $[a, \alpha]$ donc $g(a) \le x_{n+1} \le g(\alpha)$. Or, $g(a) = a - \frac{f(a)}{f'(a)}$ et f(a) > 0, f'(a) < 0. Ainsi, $\frac{f(a)}{f'(a)} < 0$ d'où g(a) > a et on a aussi que $g(\alpha) = \alpha$. Ainsi, $a \le x_{n+1} \le \alpha$. La propriété est donc vraie au rang n+1.

Ainsi, pour tout $n \in \mathbb{N}$, x_n est bien défini et $x_n \in [a, \alpha]$.

Montrons finalement par récurrence que pour tout $n \in \mathbb{N}$, $x_n \leq x_{n+1}$.

Pour n=0: on sait que $x_1=g(a)>a$. Ainsi, $x_1>x_0$. La propriété est donc vérifiée.

Soit $n \in \mathbb{N}$ tel que $x_n < x_{n+1}$.

Comme $(x_n, x_{n+1}) \in [a, \alpha]^2$ et que g est strictement croissante sur $[a, \alpha]$, on en déduit que $g(x_n) < g(x_{n+1})$ d'où $x_{n+1} < x_{n+2}$.

Ainsi, la propriété est vraie au rang n + 1.

On a donc montré que pour tout $n \in \mathbb{N}$, $x_n < x_{n+1}$.

Ainsi, $(x_n)_{n\in\mathbb{N}}$ est (strictement) croissante.

(c) $(x_n)_{n\in\mathbb{N}}$ est croissante et majorée par α donc converge d'après le théorème de la limite monotone. Notons l sa limite. On a $l \in [a, \alpha]$ (passage à la limite dans les inégalités). Or, g est continue sur $[a, \alpha]$. Ainsi, l est un point fixe de g appartenant à $[a, \alpha]$. Or,

$$g(l) = l \iff l - \frac{f(l)}{f'(l)} = l$$

 $\iff f(l) = 0$

D'après la question 1, l'équation f(x) = x admet un unique point fixe dans a, b qui est α et f(a) < 0. Ainsi, $l = \alpha$.

2. Cas général.

- (a) On sait que $\alpha \in]a,b[$. Ainsi, il existe $\eta>0$ tel que $[\alpha-\eta,\alpha+\eta]\subset [a,b]$. En posant, $h=\min(\eta,\frac{1}{K+1}),$ on aura : h>0, $[\alpha-\eta,\alpha+\eta]\subset [a,b]$ et $h\leq \frac{1}{K+1}<\frac{1}{K}.$
- (b) D'après la question II.2, on sait que pour tout $x \in [a,b], |g(x)-\alpha| \le K|x-\alpha|^2$. Ainsi, pour tout $x \in I$, on a $x \in [a,b]$ donc $|g(x) - \alpha| \leq K|x - \alpha|^2$. De plus, pour tout $x \in I, |x - \alpha| \le h$. Ainsi, pour tout $x \in I, |g(x) - \alpha| \le Kh \times h$. Or, Kh < 1. Ainsi, pour tout $x \in I$, $|g(x) - \alpha| < h$ donc $g(x) \in]\alpha - h$, $\alpha + h \subset I$.

On a donc montré que I est stable par g. Si de plus, $x_0 \in I$, on peut en déduire que pour tout $n \in \mathbb{N}$, x_n existe et $x_n \in I$.

(c) Montrons que par récurrence que pour tout $n \in \mathbb{N}$, $|x_n - \alpha| \leq \frac{1}{\kappa} (K|x_0 - \alpha|)^{2^n}$.

Pour n = 0: $\frac{1}{K} (K|x_0 - \alpha|)^{2^0} = \frac{1}{K} (K|x_0 - \alpha|) = |x_0 - \alpha|$. Ainsi, la propriété est vraie.

Soit $n \in \mathbb{N}$ tel que $|x_n - \alpha| \le \frac{1}{K} \Big(K |x_0 - \alpha| \Big)^{2^n}$. On sait alors que $x_{n+1} \in I \subset [a,b]$. Ainsi, d'après la question II.2, on a :

$$|x_{n+1} - \alpha| = |g(x_n) - g(\alpha)| \le K|x_n - \alpha|^2$$

$$\le K \left[\frac{1}{K} \left(K|x_0 - \alpha| \right)^{2^n} \right]^2$$

$$\le K \times \frac{1}{K^2} \left(K|x_0 - \alpha| \right)^{2^n \times 2}$$

$$\le \frac{1}{K} \left(K|x_0 - \alpha| \right)^{2^{n+1}}$$

PCSI5 Lycée Saint Louis

Ainsi, la propriété est vraie au rang n+1.

On a donc bien prouvé par récurrence que pour tout $n \in \mathbb{N}$, $|x_n - \alpha| \leq \frac{1}{K} (K|x_0 - \alpha|)^{2^n}$.

(d) Par hypothèse, on sait que $x_0 \in I$. Ainsi, $|x_0 - \alpha| \le h$ et $K|x_0 - \alpha| \le Kh$. On obtient ainsi que pour tout $n \in \mathbb{N}$:

$$|x_n - \alpha| \le \frac{1}{K} (Kh)^{2^n}$$

Or, 0 < Kh < 1 et $\lim_{n \to +\infty} 2^n = +\infty$. Ainsi, $\lim_{n \to +\infty} (Kh)^{2^n} = \lim_{N \to +\infty} (Kh)^N = 0$. Ainsi, par majoration, on obtient que $(x_n)_{n\in\mathbb{N}}$ converge vers α .

3. Exemple.

(a) $f(x) = 3 - x^2$. Ainsi, f est bien C^2 sur [1,3], f(1) = 2 > 0, f(3) = -6 < 0 et pour tout $x \in [1,3]$, f'(x) = -2x < 0. On est bien dans le cadre d'application de nos résultats précédents.

De plus, pour $x \in [1,3]$, $f(x) = 0 \iff x = \sqrt{3}$. Ainsi, ici $\alpha = \sqrt{3}$. Or, pour tout $x \in [1,3], |f'(x)| = 2x \in [2,6].$ Ainsi, m=2 et L=6 conviennent.

De plus, pour tout $x \in [1,3]$, |f''(x)| = 2. Ainsi, M = 2 convient. On peut donc poser $K = \frac{ML}{m^2} = \frac{2 \times 6}{2^2} = 3$.

On remarque que $1.7^2 = 2.89$ et $2^{2} = 4$. Ainsi, $1.7^2 < 3 < 4$. Comme la racine carrée est strictement croissante sur \mathbb{R}^+ , on obtient : $1.7 < \sqrt{3} < 2$.

Posons $\delta = 0.3$. On a $K\delta = 3 \times 0.3 = 0.9 < 1$. De plus,

$$1 \le \sqrt{3} - 0.3 \le \sqrt{3} + 0.3 \le 3$$

$$\iff 1 + 0.3 < \sqrt{3} < 3 - 0.3$$

$$\iff 1.3 < \sqrt{3} < 2.7$$

Or, $1.3 < 1.7 < \sqrt{3} < 2 < 2.7$. Ainsi, par équivalence, on a : $1 \le \sqrt{3} - 0.3 \le \sqrt{3} + 0.3 \le 3$ d'où $[\sqrt{3} - \delta, \sqrt{3} + \delta] \subset [1, 3]$.

Ainsi, δ vérifie bien les conditions de la question III.2.(a) On peut donc choisir $h = \delta = 0.3$.

(b) On a:

$$\sqrt{3} - 0.3 \le 2 \le \sqrt{3} + 0.3 \iff 1.7 \le \sqrt{3} \le 2.3$$

Or, on a prouvé à la question précédente que $1.7 < \sqrt{3} < 2$. Ainsi, on a bien $1.7 \le \sqrt{3} \le 2.3$ donc par équivalence, $2 \in [\sqrt{3} - h, \sqrt{3} + h]$.

Ainsi, d'après la question III.2.b, on peut conclure que pour tout $n \in \mathbb{N}$, x_n est bien défini.

(c) En utilisant la question III.2.c, on obtient que pour tout $n \in \mathbb{N}$:

$$|x_n - \sqrt{3}| \le \frac{1}{3} (3 \times |2 - \sqrt{3}|)^{2^n}$$

Or, $2 \in [\sqrt{3} - h, \sqrt{3} + h]$, ainsi, $|2 - \sqrt{3}| \le h = 0.3$.

On obtient donc que pour tout $n \in \mathbb{N}$, $|x_n - \sqrt{3}| \le \frac{1}{3} \left(3 \times 0.3\right)^{2^n} = \frac{1}{3} (0.9)^{2^n}$.

- (d) Montrer que pour tout $n \in \mathbb{N}$, on a $|x_n \sqrt{3}| \le \frac{1}{3} (0,9)^{2^n}$.
- (e) Afin d'obtenir une approximation de $\sqrt{3}$ à 10^{-100} près, il suffit de calculer x_{N_1} avec $N_1 \in \mathbb{N}$

4

PCSI5 Lycée Saint Louis

tel que
$$\frac{1}{3}(0.9)^{2^{N_1}} \le 10^{-100}$$
. Or,

$$\frac{1}{3}(0.9)^{2^{N_1}} \le 10^{-100} \iff (0.9)^{2^{N_1}} \le 3 \times 10^{-100} \iff 2^{N_1} \ln(0.9) \le \ln(3 \times 10^{-100})$$

$$\iff 2^{N_1} \ge \frac{\ln(3 \times 10^{-100})}{\ln(0.9)}$$

$$\iff N_1 \ln(2) \ge \ln\left(\frac{\ln(3 \times 10^{-100})}{\ln(0.9)}\right)$$

$$\iff N_1 \ge \frac{\ln\left(\frac{\ln(3 \times 10^{-100})}{\ln(0.9)}\right)}{\ln(0.9)}$$

On pose
$$N_1 = \left| \frac{\ln \left(\frac{\ln(3 \times 10^{-100})}{\ln(0.9)} \right)}{\ln(2)} \right| + 1.$$

En effectuant $N_1 = 12$ itérations, on aura bien une approximation de $\sqrt{3}$ à 10^{-100} près.

(f) Si l'on effectue la méthode de dichotomie sur le segment [1,3], on crée deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ qui converge vers $\sqrt{3}$. De plus, on a pour tout $n\in\mathbb{N}$, $|a_n-\sqrt{3}|\leq \frac{3-1}{2^n}=\frac{1}{2^{n-1}}$. Afin de calculer une valeur approchée de $\sqrt{3}$ à 10^{-100} près, il suffit de calculer a_{N_2} avec $N_2 \in \mathbb{N} \text{ tel que } \frac{1}{2N_2 - 1} \le 10^{-100}. \text{ Or,}$

$$\frac{1}{2^{N_2 - 1}} \le 10^{-100} \quad \iff -(N_2 - 1)\ln(2) \le -100\ln(10)$$

$$\iff (N_2 - 1) \ge \frac{100\ln(10)}{\ln(2)}$$

$$\iff N_2 \ge \frac{100\ln(10)}{\ln(2)} + 1$$

On pose
$$N_2 = \left[\frac{100 \ln(10)}{\ln(2)} + 1 \right] + 1.$$

En effectuant $N_2 = 334$ itérations, on aura bien une approximation de $\sqrt{3}$ à 10^{-100} près. La méthode de Newton semble donc être la plus efficace.

Exercice 2
1. La fonction $f: \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R}_+^* \\ x & \mapsto & \frac{1}{x} \end{array}$ convient.

En effet, pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, $f(xf(y)) = f\left(\frac{x}{y}\right) = \frac{y}{x}$ et $yf(x) = \frac{y}{x}$.

- 2. Soit f une application qui vérifie les conditions (**).
 - (a) Soit $x \in]0, +\infty[$. Si on pose $x_1 = xf(x)$ alors $f(x_1) = f(xf(x)) = xf(x) = x_1$ grâce à la relation (**) évaluée pour y = x.

Montrons par récurrence que pour tout $n \in \mathbb{N}$, $f(x_1^{2^n}) = x_1^{2^n}$. Pour n = 0, $f(x_1^{2^0}) = f(x_1^1) = f(x_1) = x_1 = x_1^1 = x_1^{2^0}$. Soit $n \in \mathbb{N}$. On suppose que $f(x_1^{2^n}) = x_1^{2^n}$.

Alors, $f\left(x_1^{2^{n+1}}\right) = f(x_1^{2^n} \times x_1^{2^n}) = f\left(x_1^{2^n} \times f\left(x_1^{2^n}\right)\right) = x_1^{2^n} f\left(x_1^{2^n}\right)$ (on a pris $x = y = x_1^{2^n}$ $x_1^{2^n} > 0 \text{ dans } (**).$

Ainsi, $f\left(x_1^{2^{n+1}}\right) = x_1^{2^n} \times x_1^{2^n} = x_1^{2^{n+1}}$ ce qui prouve la propriété au rang n+1.

Ainsi, pour tout $n \in \mathbb{N}$, $f\left(x_1^{2^n}\right) = x_1^{2^n}$. Si $x_1 > 1$, alors, $\lim_{n \to +\infty} x_1^{2^n} = +\infty$ car $\lim_{n \to +\infty} 2^n = +\infty$ et $\lim_{N \to +\infty} x_1^N = +\infty$. Comme $\lim_{x \to +\infty} f(x) = 0$, on a $\lim_{n \to +\infty} f\left(x_1^{2^n}\right) = 0$ ce qui est impossible car on doit aussi avoir $\lim_{n \to +\infty} f\left(x_1^{2^n}\right) = \lim_{n \to +\infty} x_1^{2^n} = +\infty$. Ainsi, on ne peut pas avoir $x_1 > 1$.

(b) Supposons $x_1 < 1$.

On a pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, f(xf(y)) = yf(x).

Pour tout $n \in \mathbb{N}$, si on prend $x = \frac{1}{x_1^{2^n}}$ et $y = x_1^{2^n}$, on a alors:

$$f\left(\frac{1}{x_1^{2^n}}f\left(x_1^{2^n}\right)\right) = x_1^{2^n}f\left(\frac{1}{x_1^{2^n}}\right)$$

Or, on sait que $f\left(x_1^{2^n}\right) = x_1^{2^n}$. Ainsi, on obtient :

$$f(1) = x_1^{2^n} f\left(\frac{1}{x_1^{2^n}}\right)$$

Or, $x_1 > 0$ d'où :

$$f\left(\frac{1}{x_1^{2^n}}\right) = \frac{f(1)}{x_1^{2^n}}$$

On a $0 < x_1 < 1$ donc $\frac{1}{x_1} > 1$ ainsi, $\lim_{n \to +\infty} \left(\frac{1}{x_1}\right)^{2^n} = \lim_{N \to +\infty} \left(\frac{1}{x_1}\right)^N = +\infty$.

Ainsi, $\lim_{n \to +\infty} f\left(\frac{1}{x_1^{2^n}}\right) = \lim_{x \to +\infty} f(x) = 0.$

Or, $\lim_{n \to +\infty} x_1^{2^n} = 0^+ \text{ car } 0 < x_1 < 1$. Ainsi, $\lim_{n \to +\infty} \frac{1}{x_1^{2^n}} f(1) = +\infty \text{ car } f(1) > 0$.

Ce qui est impossible car pour tout $n \in \mathbb{N}$, $f\left(\frac{1}{x_1^{2^n}}\right) = \frac{1}{x_1^{2^n}}f(1)$.

(c) D'après les questions précédentes, on peut conclure que $x_1 = 1$ c'est à dire xf(x) = 1 pour tout $x \in]0, +\infty[$.

Ainsi, pour tout $x \in \mathbb{R}_+^*$, $f(x) = \frac{1}{x}$.

On a donc montré que la seule solution au problème est l'application :