ÉCRIT TERMINAL

Session de Janvier 2014 - Durée 2h00

La calculatrice n'est pas autorisée, ainsi que les documents de cours et de TD. Chaque réponse doit être justifiée. Un soin particulier devra être apporté à la rédaction.

Les exercices sont indépendants et peuvent être traité dans un ordre quelconque.

Exercice 1.

- 1. Prouver que le produit d'un nombre quelconque d'entiers positifs de la forme 4k + 1 $(k \in \mathbb{N}^*)$ est encore un entier positif de la forme 4k + 1 $(k \in \mathbb{N}^*)$.
- 2. On considère l'ensemble E des nombres premiers de la forme 4k-1 $(k \in \mathbb{N}^*)$.
 - (a) On suppose que E est fini : $E = \{p_1, \dots, p_n\}$, et on pose alors $x = 4p_1 \dots p_n 1$. Montrer que x possède au moins un diviseur premier dans E (utiliser la question 1.).
 - (b) Que peut-on en déduire?

Exercice 2. Dans cet exercice on cherche à déterminer tous les polynômes $P \in \mathbb{R}[X]$ vérifiant les conditions :

$$P(0) = 0$$
 et $P(X^2 + 1) = P(X)^2 + 1$. (*)

On définit une suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=0$ et $u_{n+1}=u_n^2+1$ pour tout $n\in\mathbb{N}$.

- 1. Montrer que si $P \in \mathbb{R}[X]$ vérifie (*) alors $P(u_n) = u_n$ pour tout $n \in \mathbb{N}$.
- 2. La suite (u_n) comporte-t-elle un nombre fini ou infini de termes? Justifier la réponse.
- 3. En déduire que P(X) = X.

Exercice 3. Soit $n \in \mathbb{N}^*$. Dans cet exercice on cherche à calculer la quantité $a_n = \prod_{k=1}^{n-1} \sin(\frac{k\pi}{n})$.

Pour tout $k = 0, \ldots, n - 1$, on pose $z_k = 2ie^{i\frac{k\pi}{n}}\sin(\frac{k\pi}{n})$.

- 1. Montrer que les solutions dans \mathbb{C} de l'équation $(z+1)^n=1$ sont les nombres complexes z_0,z_1,\cdots,z_{n-1} .
- 2. Soit $P(X) = \sum_{k=0}^{n-1} (X+1)^k$. Montrer que le polynôme $(X+1)^n 1$ se factorise sous la forme $(X+1)^n 1 = XP(X)$, et en déduire que les racines complexes de P sont les nombres z_1, \dots, z_{n-1} .
- 3. On note $a_n = \prod_{k=1}^{n-1} \sin(\frac{k\pi}{n})$. Démontrer que $\prod_{k=1}^{n-1} e^{i\frac{k\pi}{n}} = i^{n-1}$, et en déduire l'égalité

$$\prod_{k=1}^{n-1} z_k = 2^{n-1} (-1)^{n-1} a_n.$$

4. Utiliser la question 2. pour obtenir une autre expression du produit $\prod_{k=1}^{n-1} z_k$.

5. Déduire de ce qui précède la formule $a_n = \frac{n}{2^{n-1}}$.

Exercice 4. Donner les décompositions en éléments simples dans $\mathbb{R}(X)$ des fractions rationnelles suivantes.

$$F(X) = \frac{2X^4}{(X-1)^2(X-2)} \; ; \; G(X) = \frac{X}{(X-1)^2(X^2+1)}$$