- TD18

Structures algébriques

Lois de compositions internes

Exercice 18.1 (*)

On pose pour tous $x, y \in [0, 1] \times [0, 1]$:

$$x \star y = x + y - xy$$

- 1. Montrer que \star définit une loi de composition interne commutative et associative sur [0,1] avec élément neutre.
- 2. Quels sont les éléments inversibles de $([0,1],\star)$?

Exercice 18.2 (★★)

Soit (E, \preceq) un ensemble totalement ordonné. Alors pour tout $(x, y) \in E^2$, $\max(x, y)$ est bien défini. On définit ainsi une loi de composition interne, notée max sur E.

- 1. Montrer que la loi max est associative et commutative.
- 2. Donner une condition nécessaire et suffisante pour que (E, \max) possède un élément neutre.
- 3. Lorsque cette condition est vérifiée, quels sont les éléments inversibles de E?

Groupes

Exercice 18.3 $(\bigstar \bigstar)$

1. Soient (G, \cdot) un groupe, M un ensemble et φ une bijection de G sur M.

On définit une loi interne \star sur M en posant pour tout $(x,y)\in M^2: x\star y=\varphi\left(\varphi^{-1}(x)\cdot\varphi^{-1}(y)\right).$

Montrer que (M, \star) est un groupe.

- 2. Montrer que φ est un isomorphisme de (G,\cdot) sur $(M,\star).$
- 3. On pose pour tout $(x,y) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[^2 : x \oplus y = \frac{x+y}{1-xy}.$

Montrer que \oplus est une loi interne sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et que $\left(\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[, \oplus\right)$ est un groupe commutatif isomorphe à $(\mathbb{R}, +)$.

Exercice 18.4 $(\star\star)$

Dans chacun des cas suivants, déterminer si H est ou non un sous-groupe de G.

(i) $G = (\mathbb{C}^*, \times), H = \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n.$

- (ii) $G = \mathcal{M}_n(\mathbb{C})$, H l'ensemble des matrices triangulaires supérieures de G.
- (iii) $G = GL_2(\mathbb{R})$, H l'ensemble des éléments de G dont tous les coefficients

sont dans \mathbb{Z} .

- (iv) $G = GL_n(\mathbb{R})$, H l'ensemble des matrices triangulaires supérieures dont les coefficients diagonaux valent 1.
- (v) $G = \mathfrak{S}_n$, $H = \{ \sigma \in \mathbb{G}_n \mid \sigma(1) = 2 \}$.

Exercice 18.5 $(\star\star)$

Dans cet exercice, on note G l'ensemble des similitudes directes du plan, qu'on assimile à l'ensemble des fonctions $f:\mathbb{C}\to\mathbb{C}$ telles qu'il existe $(a,b)\in\mathbb{C}^*\times\mathbb{C}$ tels que pour tout $z\in\mathbb{C}$, f(z)=az+b.

- 1. Montrer que (G, \circ) est un groupe, et qu'il n'est pas abélien.
- 2. Soit $z_0 \in \mathbb{C}$. On pose $G_{z_0} = \{g \in G \mid g(z_0) = z_0\}$. Montrer que G_{z_0} est un sous-groupe de G, isomorphe à \mathbb{C}^* . Est-il abélien?
- 3. L'ensemble des rotations du plan est-il un groupe pour la composition ? Déterminer le plus petit sous-groupe de G contenant les rotations du plan.

Exercice 18.6 (★★ - Centre d'un groupe - 🔊)

Soit (G, *) un groupe. On appelle centre de G l'ensemble :

Même question avec les homothéties du plan.

$$\mathscr{Z}(G) = \{x \in G \mid \forall y \in G, \ x * y = y * x\}.$$

- 1. Montrer que $\mathscr{Z}(G)$ est un sous-groupe de G. À quelle condition a-t-on $\mathscr{Z}(G) = G$?
- 2. Montrer que $\mathscr{Z}(\mathfrak{S}_n)$ est réduit à {id} lorsque $n \geq 3$. Que dire si n=1 ou n=2 ?
- 3. Déterminer $\mathscr{Z}(GL_n(\mathbb{K}))$ lorsque $n \geq 2$ (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Que dire si n = 1?

 Indication: on pensera à utiliser les matrices d'opérations élémentaires.

Exercice 18.7 (★★ - Union de sous-groupes)

- 1. Donner un exemple de deux sous-groupes de (\mathbb{R}^*, \times) dont l'union n'est pas un sous-groupe.
- 2. Soit G un groupe, H et K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe si, et seulement si, $H \subset K$ ou $K \subset H$.
- 3. Soit $(H_n)_{n\in\mathbb{N}}$ une union croissante de sous-groupes de G. Montrer que $\bigcup_{n\in\mathbb{N}} H_n$ est un sous-groupe de G.

Exercice 18.8 ($\star\star$ - Sous-groupes de \mathbb{Z} - $ilde{\mathbb{Z}}$)

- 1. Soit $n \in \mathbb{Z}$. Montrer que l'ensemble $n\mathbb{Z} = \{nk, k \in \mathbb{Z}\}$ est un sous-groupe de \mathbb{Z} .
- 2. Soit H un sous-groupe de \mathbb{Z} non réduit à $\{0\}$.

- (a) Justifier l'existence du minimum n_0 de l'ensemble $E = \{h \in H \mid h > 0\}$.
- (b) Montrer que $n_0\mathbb{Z} \subset H$.
- (c) Soit $h \in H$. En considérant la division euclidienne de h par n_0 , montrer que $h \in n_0 \mathbb{Z}$.
- (d) Que peut-on en conclure sur les sous-groupes de \mathbb{Z} ?
- 3. Soit (G, *) un groupe fini d'élément neutre e, et $a \in G$.
 - (a) Montrer que l'application $\varphi_a: p \in \mathbb{Z} \mapsto a^p \in G$ est un morphisme de groupes.
 - $\begin{cases} a^n = e, \\ \forall p \in \mathbb{Z}, \ a^p = e \iff n \mid p \end{cases}$ (b) En déduire l'existence et l'unicité d'un entier $n \in \mathbb{N}^*$ tel que :

Exercice 18.9 (★★ - Un cas particulier du théorème de Lagrange - 🖎)

Soit G un groupe commutatif fini, de cardinal n.

- 1. Soit $q \in G$. Montrer que $x \mapsto qx$ est une bijection de G sur lui-même.
- 2. Soit $g \in G$. En calculant de deux manières le produit $\prod (gx)$, montrer que $g^n = 1_G$.
- 3. Déterminer tous les sous-groupes finis de (\mathbb{C}^*, \times) .

Exercice 18.10 (** - Automorphismes intérieurs - 🔊)

Soit G un groupe multiplicatif. Pour $a \in G$, on note $f_a : x \in G \mapsto a x a^{-1} \in G$.

- 1. Montrer que pour tout $a \in G$, f_a est un automorphisme de G.
- 2. Montrer que $\varphi: a \in G \mapsto f_a \in \operatorname{Aut}(G)$ est un morphisme de groupes.
- 3. Déterminer le noyau de φ .

Exercice 18.11 $(\star\star)$

Déterminer tous les morphismes de groupes de $(\mathbb{Z}, +)$ dans $(\mathbb{Z}, +)$, puis de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

Exercice 18.12 ($\star\star\star$)

Les groupes suivants sont-ils isomorphes:

(i) \mathbb{U}_4 et $\mathbb{U}_2 \times \mathbb{U}_2$;

(ii) $(\mathbb{Z},+)$ et $(\mathbb{R},+)$;

(iv) $\operatorname{GL}_n(\mathbb{R})$ et $\operatorname{GL}_n(\mathbb{C})$ (où $n \geq 1$); (v) \mathfrak{S}_X et \mathfrak{S}_Y lorsque X et Y sont en bi-

(iii) (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) ;

Exercice 18.13 ($\star\star$)

Soient G un groupe, H et K deux sous-groupes de G. On pose $HK = \{h * k, h \in H, k \in K\}$.

- 1. Si G est abélien, montrer que HK est un sous-groupe de G.
- 2. Prouver que HK est un sous-groupe de G si, et seulement si, HK = KH.

3. Si H et K sont finis et si $H \cap K = \{e\}$ (où e désigne l'élément neutre de G), montrer que $Card(HK) = Card(H) \cdot Card(K)$.

Exercice 18.14 ($\star\star\star$)

Soit G un groupe non réduit à un élément tel que pour tout $g \in G$, $g^2 = e$.

- 1. Montrer que G est abélien.
- 2. Montrer que G possède au moins un sous-groupe de cardinal 2.
- 3. On suppose que G contient au moins trois éléments. Soit H un sous-groupe fini de G, différent de $\{e\}$ ou de G, et soit $g \in G \setminus H$. On pose alors $gH = \{gh, h \in H\}$.
 - (a) Montrer que $H \cup gH$ est un sous-groupe de cardinal 2|H|.
 - (b) Montrer que si G est fini, alors son cardinal est une puissance de 2.

Exercice 18.15 ($\star\star$)

- 1. Soit H un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$.
 - (a) Montrer l'existence de $a = \inf\{h \in H \mid h > 0\}$.
 - (b) Montrer que si a > 0, alors $H = a\mathbb{Z}$.
 - (c) Montrer que si a=0, alors H est une partie dense de \mathbb{R} .
- 2. Application. On admet que π est irrationnel. Prouver que l'ensemble $\mathbb{Z} + 2\pi\mathbb{Z}$ est dense dans \mathbb{R} . En déduire que l'ensemble $A = \{\cos(n), n \in \mathbb{N}\}$ est dense dans [-1, 1].

Exercice 18.16 ($\star\star\star$)

Soit G un groupe possédant exactement deux sous-groupes. Montrer qu'il existe $x \in G$ tel que $G = \langle x \rangle$, que G est fini, et que son cardinal est premier.

Exercice 18.17 $(\star\star\star)$

Soit (G, *) un groupe, et soit A une partie non vide **finie** de G, stable par *. Prouver que A est un sous-groupe de G.

18.1 Anneaux, corps

Exercice 18.18 (★)

On note A l'ensemble des matrices $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, a et b décrivant \mathbb{Z} .

Montrer que A est un anneau pour les lois d'addition et de multiplication matricielles, puis déterminer $\mathscr{U}(A)$.

Exercice 18.19 $(\bigstar \bigstar)$

L'anneau $(\mathbb{R}^{\mathbb{R}}, +, \times)$ est-il intègre? Déterminer $\mathscr{U}(\mathbb{R}^{\mathbb{R}})$.

Exercice 18.20 $(\bigstar \star)$

Soit $a \in \mathbb{N}^*$ fixé. On pose $A = \left\{ \frac{p}{a^n} \mid p \in \mathbb{Z}, n \in \mathbb{N} \right\}$.

- 1. Montrer que A est un sous-anneau de $\mathbb Q$ et déterminer $\mathscr U(A)$.
- 2. Expliciter $\mathcal{U}(A)$ dans les cas a=2 puis a=10.

Exercice 18.21 $(\bigstar \bigstar)$

- 1. On rappelle que $\mathbb{Z}[i] = \{a + ib, a, b \in \mathbb{Z}\}$ est un sous-anneau de \mathbb{C} . Montrer que pour tout $z \in \mathbb{Z}[i], |z|^2 \in \mathbb{N}$, puis en déduire $\mathcal{U}(\mathbb{Z}[i])$.
- 2. Montrer que l'ensemble $\mathbb{Z}[i\sqrt{2}] = \{a + ib\sqrt{2}, a, b \in \mathbb{Z}\}$ est un sous-anneau de \mathbb{C} , puis déterminer $\mathscr{U}(\mathbb{Z}[i\sqrt{2}])$.

Exercice 18.22 (★★ - Produit direct d'anneaux)

Soient $(A, +_A, \times_A)$ et $(B, +_B, \times_B)$ deux anneaux. On munit $A \times B$ de deux lois de composition \oplus et \otimes définies par :

$$(a,b) \oplus (a',b') = (a +_A a', b +_B b')$$
 et $(a,b) \otimes (a',b') = (a \times_A a', b \times_B b')$

Montrer que $(A \times B, \oplus, \otimes)$ est un anneau, commutatif si A et B le sont. Cet anneau est-il intègre ?

Exercice 18.23 (★★)

Parmi les ensembles suivants, les quels sont des sous-anneaux de ${\bf R^N},$ l'anneau des suites réelles ?

- (i) l'ensemble des suites de limite nulle ;
- (ii) l'ensemble des suites croissantes ;
- (iii) l'ensemble des suites convergentes ;
- (iv) l'ensemble des suites divergentes ;
- (v) l'ensemble des suites bornées ;

- (vi) l'ensemble des suites (u_n) telles que $\lim_{n\to+\infty} u_n = +\infty$;
- (vii) l'ensemble des suites stationnaires;
- (viii) l'ensemble des suites nulles à partir d'un certain rang.

Exercice 18.24 $(\bigstar \star)$

Soit A un anneau. Un élément $x \in A$ est dit nilpotent si $x^p = 0_A$ pour un certain $p \in \mathbb{N}^*$. Le cas échéant, le plus petit entier p qui satisfait cette relation est appelé l'indice de nilpotence de x.

- 1. Montrer que si A est intègre, 0_A est le seul élément nilpotent de A.
- 2. Montrer que la somme et le produit de deux éléments nilpotents de A qui commutent sont encore nilpotents.
- 3. Pour tout $x \in A$ nilpotent, montrer que $1_A x$ est inversible et déterminer $(1_A x)^{-1}$.

Exercice 18.25 $(\star\star)$

Soit A un anneau de Boole, i.e. un anneau non nul pour lequel $x^2 = x$ pour tout $x \in A$.

- 1. Montrer que A est commutatif.
- 2. Déterminer A dans le cas où A est intègre.
- 3. On définit une relation binaire \leq sur A en posant pour tous $x, y \in A$: $x \leq y \iff yx = x$.

Montrer que \leq est une relation d'ordre.

Exercice 18.26 $(\star\star\star)$

Prouver que $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid (a, b) \in \mathbb{Q}^2\}$ est un corps et déterminer tous ses automorphismes.

Exercice 18.27 ($\star\star$)

Montrer qu'un anneau commutatif intègre fini est un corps.

Exercice 18.28 (★★★ - Idéaux premiers (d'après oral ENS))

Soit A un anneau commutatif non nul. On appelle idéal de A tout sous-groupe I de (A, +) tel que $\forall (a, x) \in A \times I, ax \in I$.

- 1. Montrer que pour tout $x \in A, xA = \{ax, a \in A\}$ est un idéal de A.
- 2. Un idéal I est dit maximal si tout idéal de A, différent de A, et qui contient I est égal à I lui-même.

Un idéal I différent de A est dit premier si : $\forall (a,b) \in A^2, ab \in I \Rightarrow a \in I$ ou $b \in I$.

- (a) Montrer qu'un idéal I est maximal si, et seulement si, pour tout $x \in A \backslash I$, I + xA = A (où I + aA est l'ensemble des éléments qui s'écrivent comme somme d'un élément de I et d'un élément de aA).
- (b) Prouver qu'un idéal maximal est premier.
- 3. Montrer que A est un corps si, et seulement si, tout idéal de A autre que A est premier.