- TD10 -

Applications, relations binaires

Généralités sur les applications

Exercice 10.1 (\bigstar)

Soit $f: x \in \mathbb{R} \mapsto \cos(x)$. Déterminer les ensembles suivants (on pourra pour cela tracer la courbe représentative de f):

$$f(\mathbb{R}),\ f([0,\pi]),\ f([-\pi/2,\pi/2]),\ f^{-1}(\{0\}),\ f^{-1}(\{\sqrt{3}/2\}),\ f^{-1}([0,1])$$

$$f^{-1}(f(\{0\}),\ f(f^{-1}(\{0\})),\ f^{-1}(f([0,\pi/2])),\ f(f^{-1}([0,1])).$$

Exercice 10.2 ($\star\star$) Soit $f: \begin{array}{c} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & z^2+z+1 \end{array}$.

1. Déterminer $f(\mathbb{C})$, $f(\mathbb{C}^*)$ et $f(\mathbb{R})$.

2. Déterminer $f^{-1}(\mathbb{C})$, $f^{-1}(\mathbb{C}^*)$ et $f^{-1}(\mathbb{R})$.

Exercice 10.3 $(\star\star)$

Soit $f: E \to F$. Prouver que:

- (i) pour tout $A \in \mathcal{P}(E)$, $A \subset f^{-1}(f(A))$ et pour tout $B \in \mathcal{P}(F)$, $f(f^{-1}(B)) \subset B$.
- (ii) pour tout $A, A' \in \mathcal{P}(E), f(A \cup A') = f(A) \cup f(A')$ et $f(A \cap A') \subset f(A) \cap f(A')$.
- (iii) pour tout $B, B' \in \mathcal{P}(F)$, $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$ et $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$.

Injections, surjections, bijections

Exercice 10.4 (\bigstar)

Déterminer si les applications suivantes sont injectives, surjectives ou bijectives :

$$f_1: x \mapsto x + \frac{1}{x} \text{ de }]0, +\infty[\text{ dans } \mathbb{R}_+ ;$$

$$f_2: x \mapsto x + \frac{1}{x} \text{ de } [1, +\infty[\text{ dans } \mathbb{R}_+ ;$$

$$f_3: (x,y) \mapsto x - y^2 \text{ de } \mathbb{R}^2 \text{ dans } \mathbb{R};$$

$$f_4: (x,y) \mapsto (x-y, -2x+2y) \text{ de } \mathbb{R}^2 \text{ dans } \mathbb{R}^2;$$

$$f_5: (x, y, z) \mapsto (x + 2y + z, y, -x - 4y + z)$$
 de \mathbb{R}^3 dans \mathbb{R}^3 ;

$$f_6: n \mapsto \begin{cases} \frac{n}{2} & \text{si } n \text{ pair} \\ -\frac{n+1}{2} & \text{si } n \text{ impair} \end{cases} \text{ de } \mathbb{N} \text{ dans } \mathbb{Z}.$$

Exercice 10.5 (*)

Soient
$$f: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array}$$
 et $g: \mathbb{N} \to \mathbb{N}$ définie par $g(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ pair} \\ 0 & \text{si } n \text{ impair} \end{cases}$

1. Calculer $g \circ f$ puis $f \circ g$.

2. f et q sont-elles bijectives?

Exercice 10.6 $(\star\star)$

Soit
$$a \in \mathbb{C} \setminus \mathbb{U}$$
. Considérons $f_a : z \mapsto \frac{z+a}{\overline{a}z+1}$.

- 1. Montrer que f_a est définie sur \mathbb{U} et à valeurs dans \mathbb{U} .
- 2. Montrer que f_a est bijective de \mathbb{U} sur \mathbb{U} et déterminer sa réciproque.

Exercice 10.7 $(\star\star)$

Soit $f:E\to F$ et $g:E\to G$ deux applications. On considère l'application $h:E\to F\times G$ définie par :

$$\forall x \in E, \quad h(x) = (f(x), g(x)).$$

- 1. Montrer que si f ou g est injective, alors h est injective.
- 2. On suppose f et q surjectives, h est-elle surjective?

Exercice 10.8 $(\star\star)$

Soit E un ensemble et f une application de E vers E.

- 1. Supposons que $f \circ f = f$. Montrer que si f est injective ou surjective, alors $f = id_E$.
- 2. Supposons que $f \circ f \circ f = f$. Montrer que f est injective si et seulement si f est surjective.

Exercice 10.9 $(\bigstar \bigstar)$

Étant données trois applications $f: E \to F, g: F \to G, h: G \to E$, établir que :

- (i) si deux applications $g \circ f, h \circ g, f \circ h$ sont bijectives, la troisième l'est aussi.
- (ii) si deux des applications $f \circ g \circ h$, $g \circ h \circ f$, $h \circ g \circ f$ sont injectives (resp. surjectives) et la troisième est surjective (resp. injective), alors f, g, h sont bijectives.

Exercice 10.10 $(\star\star)$

Soient E et F deux ensembles et f une application de E dans F.

- 1. On suppose que f injective. Montrer que pour tout $M, N \in \mathcal{P}(E)$, $f(M \cap N) = f(M) \cap f(N)$.
- 2. Réciproquement, montrer que si pour tout $M, N \in \mathcal{P}(E)$, $f(M \cap N) = f(M) \cap f(N)$, alors f est injective.

Exercice 10.11 ($\star\star\star$)

Soit E et F deux ensembles, et f une application de E vers F.

- 1. Montrer que f est injective si, et seulement si, pour tout $A \subset E$, $A = f^{-1}(f(A))$.
- 2. Montrer que f est surjective si, et seulement si, pour tout $B \subset F$, $B = f(f^{-1}(B))$.

Exercice 10.12 $(\star\star\star)$

Soient E et F deux ensembles, et f une application de E dans F. On considère les applications :

$$\varphi: \left\{ \begin{array}{ccc} \mathscr{P}(E) & \to & \mathscr{P}(F) \\ A & \mapsto & f(A) \end{array} \right. \quad \text{et} \quad \psi: \left\{ \begin{array}{ccc} \mathscr{P}(F) & \to & \mathscr{P}(E) \\ B & \mapsto & f^{-1}(B). \end{array} \right.$$

Montrer les équivalences :

(i) f injective $\Leftrightarrow \varphi$ injective $\Leftrightarrow \psi$ surjective ; (ii) f surjective $\Leftrightarrow \varphi$ surjective $\Leftrightarrow \psi$ injective.

Exercice 10.13 ($\star\star$)

Soient E et F deux ensembles. Montrer qu'il existe une application injective de E dans F si, et seulement si, il existe une application surjective de F dans E.

Exercice 10.14 ($\star\star\star$)

Soit E un ensemble, et A, B deux sous-ensembles de E. On considère l'application :

$$f: \begin{array}{ccc} \mathscr{P}(E) & \to & \mathscr{P}(A) \times \mathscr{P}(B) \\ X & \mapsto & (X \cap A, X \cap B) \end{array}.$$

- 1. Donner une condition nécessaire et suffisante pour que f soit injective (resp. surjective, resp. bijective).
- 2. Dans le cas où f est bijective, déterminer son application réciproque.

Exercice 10.15 $(\star\star\star\star)$

Soit $f: E \to F$.

- 1. Montrer que pour tout $B \in \mathscr{P}(F)$, $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$.
- 2. Montrer que f est bijective si, et seulement si, pour tout $A \in \mathscr{P}(E)$, $f(\overline{A}) = \overline{f(A)}$.

Exercice 10.16 ($\star\star\star\star$ - Oral Polytechnique 2017)

Déterminer toutes les applications $f: \mathbb{N}^* \to \mathbb{N}^*$ telles que $f + f \circ f + f \circ f \circ f = 3id$.

Relations binaires

Exercice 10.17 (\bigstar)

Montrer que la relation \mathscr{R} définie sur \mathbb{C} par $z\mathscr{R}z' \Leftrightarrow |z| = |z'|$ est une relation d'équivalence. Décrire géométriquement ses classes d'équivalence.

Exercice 10.18 $(\star\star)$

Sur \mathbb{Z} , on définit une relation binaire \mathscr{R} par : $\forall (a,b) \in \mathbb{Z}^2$, $a\mathscr{R}b \Leftrightarrow a^3 - b^3 = a - b$. Montrer que \mathscr{R} est une relation d'équivalence et déterminer la classe d'équivalence d'un élément $a \in \mathbb{Z}$.

Exercice 10.19 $(\star\star)$

Soit E un ensemble, et soit $A \in \mathscr{P}(E)$.

On définit alors une relation $\sim \operatorname{sur} \mathscr{P}(E) \operatorname{par} X \sim Y \Leftrightarrow X \cap A = Y \cap A$.

- 1. Montrer que \sim est une relation d'équivalence sur $\mathscr{P}(E)$.
- 2. Prouver que l'application ψ qui à un élément X de $\mathscr{P}(A)$ associe sa classe d'équivalence pour \sim est une bijection de $\mathscr{P}(A)$ sur l'ensemble des classes d'équivalence de \sim .

Exercice 10.20 ($\star\star\star$)

Soit E et F deux ensembles et f une application de E vers F. On définit la relation $\mathscr R$ sur E en posant :

$$x\mathcal{R}y \Leftrightarrow f(x) = f(y).$$

- 1. Montrer que $\mathcal R$ est une relation d'équivalence sur E. Décrire les classes d'équivalence de cette relation.
- 2. Notons E/\mathscr{R} l'ensemble des classes d'équivalences pour la relation d'équivalence \mathscr{R} et considérons l'application :

$$\tilde{f}: \begin{array}{ccc} E/\mathscr{R} & \to & F \\ \overline{x} & \mapsto & f(x) \end{array}$$

- (a) Montrer que l'application \tilde{f} est bien définie, c'est-à-dire que l'image de \overline{x} par \tilde{f} ne dépend pas du représentant choisi dans la classe de \overline{x} .
- (b) Montrer que \tilde{f} est une application injective.

Exercice 10.21 ($\star\star\star$)

Soit E un ensemble non vide et soit $A \subset \mathcal{P}(E)$ une partition de E.

Montrer qu'il existe une unique relation d'équivalence \sim sur E telle que A soit l'ensemble des classes d'équivalence de \sim .

Exercice $10.22 (\bigstar)$

Sur $E = \{z \in \mathbb{C} \mid \text{Im}(z) \ge 0\}$, on définit une relation \le par :

$$\forall (z, z') \in E^2$$
, $z \leq z' \Leftrightarrow (|z| < |z'|)$ ou $(|z| = |z'|)$ et $\operatorname{Re}(z) \leq \operatorname{Re}(z')$.

Montrer que (E, \preceq) est un ensemble totalement ordonné.

Exercice 10.23 $(\star\star)$

On définit une relation \leq sur \mathbb{N} en posant $p \leq q \Leftrightarrow \exists n \in \mathbb{N}, q = p^n$. Montrer que \leq est une relation d'ordre. Est-ce un ordre total ?

Exercice 10.24 $(\bigstar \star)$

On travaille dans \mathbb{N} muni de la relation de divisibilité |. L'ensemble $\{2^n, n \in \mathbb{N}\}$ possède-t-il un plus grand élément? un plus petit élément? une borne supérieure? une borne inférieure?

Exercice 10.25 $(\bigstar \bigstar)$

Soit E un ensemble possédant au moins deux éléments. On considère l'ensemble $\mathscr{P}(E)$ muni de la relation d'ordre \subset .

- 1. Montrer que $\mathscr{P}(E)\backslash\{E\}$ ne possède pas de plus grand élément.
- 2. Montrer que l'ensemble des singletons de E ne possède pas de plus grand élément. Est-il majoré ou minoré ? Admet-il une borne supérieure ou une borne inférieure ?

Exercice 10.26 ($\star\star\star$)

Soit E un ensemble ordonné tel que toute partie non vide de E possède un plus grand et un plus petit élément. Montrer que E est fini.