Fonctions convexes

1	Fonctions convexes	
	1.1	Cordes, sécantes
	1.2	Définition
	1.3	Inégalité des pentes
•	~	
2	Cor	avexité et dérivabilité
	2.1	CNS de convexité pour une fonction
		dérivable
	2.2	Inégalités de convexité classiques

Compétences attendues.

- ✓ Montrer qu'une fonction est convexe ou concave.
- ✓ Connaître et appliquer à bon escient les inégalités des pentes.
- ✓ Obtenir des inégalités de convexité à l'aide des positions relatives courbe/tangente et courbe/corde.

Mathieu Mansuy - Professeur en MP2I au Lycée Carnot (Dijon)

Page personnelle: mathieu-mansuy.fr/ E-mail: mathieu.mansuy@ac-dijon.fr

1 Fonctions convexes

Dans tout le chapitre I désigne un intervalle de \mathbb{R} .

1.1 Cordes, sécantes

Propriété 1 -

Soient A et B deux points du plan de coordonnées respectives (x_A, y_A) et (x_B, y_B) avec $x_A \neq x_B$. Notons (AB) la droite passant par A et B, et [A, B] le segment d'extrémités A et B. Alors :

$$(AB) = \left\{ (x, y) \in \mathbb{R}^2 \mid y = \frac{y_B - y_A}{x_B - x_A} (x - x_A) + y_A \right\}$$

= \{ \left((1 - \lambda) x_A + \lambda x_B, (1 - \lambda) y_A + \lambda y_B \right), \lambda \in \mathbb{R} \}

et

$$[A, B] = \{((1 - \lambda)x_A + \lambda x_B, (1 - \lambda)y_A + \lambda y_B), \ \lambda \in [0, 1]\}.$$

Remarque. En particulier pour tous réels a < b, x appartient à [a, b] si, et seulement si, il existe $\lambda \in [0, 1]$ tel que $x = (1 - \lambda)a + \lambda b$, et alors $\lambda = \frac{x - a}{b - a}$, rapport de la distance entre a et x avec celle entre a et b.

Définition.

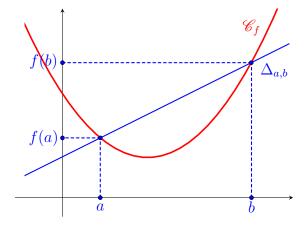
Soit $f:I\to\mathbb{R}$ une fonction, et soient $a,b\in I$ deux points distincts.

• On appelle sécante de f passant par (a, f(a)) et (b, f(b)) la droite notée $\Delta_{a,b}$ passant par les points (a, f(a)) et (b, f(b)) du plan, c'est-à-dire l'ensemble :

$$\Delta_{a,b} = \left\{ (x,y) \in \mathbb{R}^2 \mid y = \frac{f(b) - f(a)}{b - a} (x - a) + f(a) \right\}$$
$$= \left\{ ((1 - \lambda)a + \lambda b, (1 - \lambda)f(a) + \lambda f(b)), \ \lambda \in \mathbb{R} \right\}.$$

• On appelle corde de f entre a et b le segment d'extrémités (a, f(a)) et (b, f(b)), c'est-à-dire l'ensemble :

$$\{((1-\lambda)a+\lambda b,(1-\lambda)f(a)+\lambda f(b)),\ \lambda\in[0,1]\}.$$



1.2 Définition

Définition.

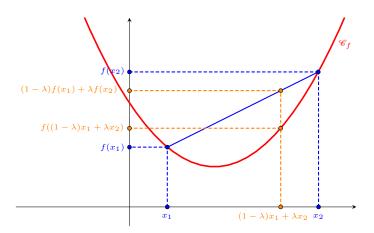
On dit qu'une fonction $f: I \to \mathbb{R}$ est convexe sur I si :

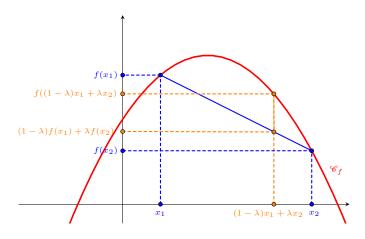
$$\forall (x_1, x_2) \in I^2, \quad \forall \lambda \in [0, 1], \quad f((1 - \lambda)x_1 + \lambda x_2) \le (1 - \lambda)f(x_1) + \lambda f(x_2).$$

On dit que f est concave sur I si -f est convexe sur I, c'est-à-dire si :

$$\forall (x_1, x_2) \in I^2, \quad \forall \lambda \in [0, 1], \quad f((1 - \lambda)x_1 + \lambda x_2) \ge (1 - \lambda)f(x_1) + \lambda f(x_2).$$

Interprétation graphique.





f est **convexe sur** I si, et seulement si, sa courbe \mathscr{C}_f est **en dessous de ses cordes** sur I.

f est **concave sur** I si, et seulement si, sa courbe \mathscr{C}_f est **au dessus de ses cordes** sur I.

Exemples.

- Une fonctions affine est convexe et concave sur \mathbb{R} , puisqu'elle est confondue avec ses sécantes.
- La fonction valeur absolue est convexe sur \mathbb{R} car pour tous $x_1, x_2 \in \mathbb{R}$ et $\lambda \in [0, 1]$, d'après l'inégalité triangulaire :

$$|\lambda x_1 + (1 - \lambda)x_2| \le |\lambda| \times |x_1| + |1 - \lambda| \times |x_2| = \lambda |x_1| + (1 - \lambda)|x_2|.$$

Propriété 2 (Position de la courbe d'une fonction convexe par rapport à ses sécantes) —

Soient $f: I \longrightarrow \mathbb{R}$ une fonction convexe sur I et $a, b \in I$ avec a < b.

La courbe de f est située sous sa sécante sur [a,b] et au-dessus à l'extérieur de [a,b].

- **Propriété 3** (Inégalité de Jensen) ——

Soit f une fonction convexe sur I. Alors pour tout $n \in \mathbb{N}^*$, pour tout $(x_1, \ldots, x_n) \in I^n$ et $(\lambda_1, \ldots, \lambda_n) \in [0, 1]^n$ tel que $\lambda_1 + \cdots + \lambda_n = 1$:

$$f(\lambda_1 x_1 + \dots + \lambda_n x_n) \le \lambda_1 f(x_1) + \dots + \lambda_n f(x_n).$$

1.3 Inégalité des pentes

- Propriété 4 –

Soit $f: I \to \mathbb{R}$. Alors f est convexe sur I si, et seulement si, pour tout $a \in I$, la « fonction pente en a » :

$$\tau_a: \begin{array}{ccc} I\setminus\{a\} & \to & \mathbb{R} \\ \tau_a: & & \mapsto & \frac{f(x)-f(a)}{x-a} \end{array}$$

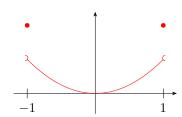
est croissante sur $I \setminus \{a\}$.

- Corollaire 5 -

Si I est un intervalle **ouvert**, alors une fonction convexe sur I est continue sur I.

Mise en garde.

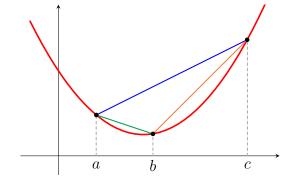
- Il est essentiel que l'intervalle I soit **ouvert** : par exemple, la fonction smiley ci-contre est convexe sur [-1, 1], mais pas continue en -1 et en 1.
- On a montré dans la preuve de la propriété précédente qu'une fonction convexe sur un intervalle I ouvert est dérivable à gauche et à droite en tout point de I. Mais elle n'est en général pas dérivable sur I, comme le montre le cas de la fonction valeur absolue.



Corollaire 6 (Inégalité des trois pentes) -

Soit $f: I \to \mathbb{R}$ une fonction convexe. Alors, pour tous a, b, c éléments distincts de I avec a < b < c:

$$\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}.$$



2 Convexité et dérivabilité

2.1 CNS de convexité pour une fonction dérivable

- Propriété 7 —

Soit $f: I \to \mathbb{R}$ dérivable. Alors il y a équivalence entre :

- (1) f est convexe sur I;
- (2) f' est croissante sur I;
- (3) \mathscr{C}_f est au dessus de ses tangentes sur I, c'est-à-dire :

$$\forall (a,x) \in I^2, \ f(x) \ge f'(a)(x-a) + f(a).$$

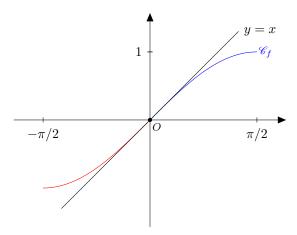
Corollaire 8

Soit $f: I \to \mathbb{R}$ deux fois dérivable. Alors f est convexe sur I si, et seulement si, $f''(x) \ge 0$ pour tout $x \in I$.

Exemple. Étudions la convexité de la fonction sinus sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Cette fonction est de classe \mathscr{C}^2 sur cet intervalle, et :

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad (\sin)''(x) = -\sin(x).$$

Puisque $-\sin(x) \le 0$ sur l'intervalle $\left[0, \frac{\pi}{2}\right]$ et $-\sin(x) \ge 0$ sur $\left[-\frac{\pi}{2}, 0\right]$, la fonction sin est concave sur $\left[0, \frac{\pi}{2}\right]$ et convexe sur $\left[-\frac{\pi}{2}, 0\right]$. Elle change ainsi de concavité en 0: on parle de *point d'inflexion de la courbe*



La courbe du sinus change de concavité en 0 :

elle est convexe sur $\left[-\frac{\pi}{2},0\right]$ (arc représenté en rouge) et concave sur $\left[0,\frac{\pi}{2}\right]$ (arc en bleu).

Définition.

Soit $f: I \to \mathbb{R}$, et soit a un point intérieur à I.

On dit que f possède un point d'inflexion en a si f change de concavité en a, c'est-à-dire si f est convexe au voisinage de a à gauche et concave au voisinage de a à droite, ou l'inverse.

Si f est deux fois dérivable sur I, f admet un point d'inflexion en a si, et seulement si, f'' s'annule en a en changeant de signe.

Remarque. Soit $f: I \to \mathbb{R}$ une fonction dérivable. Si f admet un point d'inflexion en $a \in I$, alors la courbe de f traverse sa tangente en a. En effet, quitte à considérer -f à la place de f, il existe $\eta > 0$ tel que f est concave sur $[a - \eta, a]$ et convexe sur $[a, a + \eta]$. Donc \mathscr{C}_f est en dessous de sa tangente en a sur $[a - \eta, a]$ et au dessus sur $[a, a + \eta]$.

2.2 Inégalités de convexité classiques

Exercice 1 Montrer les inégalités suivantes :

• $\forall x \in \mathbb{R}, e^x \ge 1 + x$;

• $\forall x \in \left[0, \frac{\pi}{2}\right], \frac{2}{\pi}x \le \sin(x) \le x.$

• $\forall x \in]-1, +\infty[, \ln(1+x) \le x;$

- Astuce.

L'équation cartésienne de la tangente à \mathscr{C}_f en a est :

$$y = f'(a)(x - a) + f(a).$$

Pour obtenir l'équation cartésienne de la sécante passant par (a,f(a)) et (b,f(b)), on remplace la dérivée f'(a) par le taux d'accroissement $\frac{f(b) - f(a)}{b - a}$, ce qui donne :

$$y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

Exercice 2 Montrer l'inégalité suivante, appelée inégalité arithmético-géométrique :

$$\forall x_1, \dots, x_n > 0, \ \sqrt[n]{x_1 \dots x_n} \le \frac{x_1 + \dots + x_n}{n}.$$