Structures algébriques

1	Loi de composition interne					
	1.1	Définitions	2			
	1.2	Élément neutre, inversibilité	3			
	1.3	Itérés d'un élément	6			
2	Groupes					
	2.1	Définitions et exemples	7			
	2.2		9			
	2.3	Morphismes de groupes	11			
3	Généralités sur les anneaux					
	3.1	Définitions et exemples	13			
	3.2	Sous-anneaux	14			
	3.3	Diviseurs de zéro	15			
	3.4	Éléments inversibles	16			
	3.5	Morphismes d'anneaux	17			
4	Cor	ps commutatifs	18			
5	Une	e brève introduction à $\mathbb{Z}/n\mathbb{Z}$	18			

Compétences attendues.

- ✓ Reconnaître une structure algébrique.
- ✓ Utiliser une caractérisation d'une sous-structure.
- $\checkmark\,$ Effectuer des calculs dans un groupe, dans un anneau.

Mathieu Mansuy - Professeur en MP2I au Lycée Carnot (Dijon)

Page personnelle: mathieu-mansuy.fr/ E-mail: mathieu.mansuy@ac-dijon.fr

1 Loi de composition interne

1.1 Définitions

Définition.

Soit E un ensemble. On appelle loi de composition interne sur E toute application de $E \times E$ dans E.

Notation.

Une telle loi sera en général notée sous l'une des formes suivantes :

• + en notation additive; • $*, \star, \cdot, \circ, \ldots$ en notation multiplicative.

Au lieu d'utiliser la notation standard +(x,y) pour l'image du couple (x,y) par l'application +, on note plutôt x+y (ou x*y, x*y, x*y, $x\circ y$, ...).

Exemples.

- La somme $(x,y) \mapsto x+y$ et le produit $(x,y) \mapsto x \times y$ sont des lois de composition interne sur \mathbb{R} , mais aussi sur \mathbb{C} , sur \mathbb{Z} , sur \mathbb{Q} ou sur \mathbb{N} .
- La différence $(x,y) \mapsto x-y$ est une loi de composition interne sur \mathbb{C} , \mathbb{R} , \mathbb{Q} et \mathbb{Z} , mais pas sur \mathbb{N} puisque la différence de deux entiers naturel peut être négative.
- Sur l'ensemble $\mathscr{P}(E)$ des parties de E, on a deux lois de composition qui sont $(A, B) \mapsto A \cap B$ et $(A, B) \mapsto A \cup B$.
- L'ensemble $\mathcal{M}_n(\mathbb{K})$ est muni de deux lois de composition internes, qui sont la somme et le produit.
- Sur l'ensemble $\mathscr{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} , la somme $(f,g)\mapsto f+g$ et la composition $(f,g)\mapsto f\circ g$ sont deux lois de composition internes.

Vocabulaire. Un couple (E, *) formé d'un ensemble E et d'une loi de composition interne * sur E est parfois appelé un magma. Cette appellation est un peu désuète, mais vous pourriez la rencontrer dans certains livres. Elle n'apparait cependant nulle part dans les programmes, et nous ne l'utiliserons jamais.

Définition.

Soit E un ensemble muni d'une loi de composition interne *. On dit que la loi * est :

- commutative si pour tout $(x,y) \in E^2$, x * y = y * x;
- associative si pour tout $(x, y, z) \in E^3$, x * (y * z) = (x * y) * z.

Exemples.

- Sur \mathbb{C} (et donc sur \mathbb{R} , \mathbb{Q} , \mathbb{Z} et \mathbb{N}), la somme et le produit sont à la fois associatifs et commutatifs.
- La différence n'est pas commutative sur \mathbb{Z} car $2-3\neq 3-2$. Elle n'est pas non plus associative car $1-(1-1)\neq (1-1)-1$.
- L'union et l'intersection sont commutatives et associatives sur $\mathscr{P}(E)$.

- Sur $\mathscr{F}(\mathbb{R}, \mathbb{R})$ la composition est associative, mais elle n'est pas commutative. Par exemple, si $f: x \mapsto x+1$ et $g: x \mapsto x^2$, alors $f \circ g \neq g \circ f$.
- La somme de matrices est associative et commutative, le produit est associatif mais n'est pas commutatif si $n \ge 2$ car $E_{1,2}E_{2,1} = E_{1,1} \ne E_{2,2} = E_{2,1}E_{1,2}$.

Exercice 1 On munit E =]-1,1[de la loi de composition * définie pour tout $(x,y) \in E^2$ par $x*y = \frac{x+y}{1+xy}$. Montrer que * est une loi de composition interne associative et commutative sur E.

Définition.

Soit E un ensemble muni d'une loi de composition interne *, et soit $A \subset E$.

On dit que A est stable par * si pour tout $(x, y) \in A^2$, x * y appartient à A.

Dans ce cas, on appelle restriction de la loi * à A la loi de composition interne définie sur A par $(x,y)\mapsto x*y$.

Remarque. Si * est associative (resp. commutative), alors sa restriction à A l'est également.

Définition.

Soit E un ensemble muni de deux lois de composition internes \oplus et *. On dit que * est distributive par rapport à \oplus si

$$\forall (x,y,z) \in E^3, \ x*(y\oplus z) = (x*y)\oplus (x*z) \ \text{et} \ (x\oplus y)*z = (x*z)\oplus (y*z).$$

Exemples.

- Dans \mathbb{R} ou dans \mathbb{C} , le produit est distributif par rapport à la somme. De même dans $\mathcal{M}_n(\mathbb{R})$ ou $\mathcal{M}_n(\mathbb{C})$.
- Dans $\mathscr{P}(E)$, \cup est distributif par rapport à \cap et \cap est distributif par rapport à \cup .

Remarque. Une récurrence facile prouve que lorsque * est distributive par rapport à \oplus , et que \oplus est associative, alors pour tout $n \in \mathbb{N}^*$, pour tous $y_1, \ldots, y_n \in E^n$ et $x \in E$:

$$x * (y_1 \oplus y_2 \oplus \cdots \oplus y_n) = (x * y_1) \oplus \cdots \oplus (x * y_n).$$

1.2 Élément neutre, inversibilité

Définition.

Soit E un ensemble muni d'une loi de composition interne *. On dit que $e \in E$ est un élément neutre pour * si :

$$\forall x \in E, \ x * e = e * x = x.$$

Propriété 1 -

Soit E un ensemble muni d'une loi de composition interne *. Si un élément neutre existe, alors il est unique.

Exemples.

- Dans \mathbb{C} , \mathbb{R} , \mathbb{Q} ou \mathbb{Z} , 0 est l'élément neutre pour l'addition et 1 est l'élément neutre pour la multiplication.
- Dans $\mathscr{P}(E)$, E est l'élément neutre pour l'intersection et \emptyset est l'élément neutre pour l'union.
- $id_{\mathbb{R}}$ est l'élément neutre de $\mathscr{F}(\mathbb{R},\mathbb{R})$ pour la composition \circ .
- I_n est l'élément neutre de $\mathcal{M}_n(\mathbb{K})$ pour la multiplication, et la matrice nulle est l'élément neutre pour l'addition.

Définition.

Soit E un ensemble muni d'une loi de composition interne * possédant un élément neutre e. Un élément $x \in E$ est dit symétrisable ou inversible s'il existe $y \in E$ tel que x * y = y * x = e.

Exemples.

- Dans $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, tout élément est symétrisable, car on a toujours x + (-x) = (-x) + x = 0.
 - Dans $(\mathbb{N}, +)$, seul 0 est symétrisable.
- Dans (\mathbb{N}, \times) , seul 1 est symétrisable. Dans (\mathbb{Z}, \times) seuls 1 et -1 sont symétrisables. Dans (\mathbb{Q}, \times) , (\mathbb{R}, \times) , (\mathbb{C}, \times) , tout élément non nul est symétrisable. En revanche, 0 n'est pas symétrisable car pour tout élément y, $0 \times y = y \times 0 = 0 \neq 1$.
- Dans $(\mathscr{P}(E), \cap)$, on a vu que E est l'élément neutre, et c'est le seul élément symétrisable car pour tous $A, B \in \mathscr{P}(E)$, si $A \cap B = E$, alors A = B = E.
 - Dans $(\mathscr{P}(E), \cup)$, on a vu que \emptyset est l'élément neutre, et c'est le seul élément symétrisable car pour tous $A, B \in \mathscr{P}(E)$, si $A \cup B = \emptyset$, alors $A = B = \emptyset$.

Vocabulaire. Un couple (E,*) formé d'un ensemble E et d'une loi de composition interne * sur E associative et possédant un élément neutre e, est parfois appelé monoïde. Comme pour les magmas, cette appellation n'apparait pas dans le programme officiel, et nous ne l'utiliserons pas. C'est tout de même le contexte dans lequel on se place dans la prochaine propriété.

- Propriété 2 –

Soit E un ensemble muni d'une loi **associative** * possédant un élément neutre e. Si $x \in E$ est symétrisable, alors il existe un unique $y \in E$ tel que x * y = y * x = e.

Cet élément est appelé le symétrique de x.

Notation.

On note le symétrique de x (s'il existe) :

- -x en notation additive, et on parle plutôt de l'opposé de x dans ce cas ;
- x^{-1} en notation multiplicative, et on parle alors plutôt de l'inverse de x.

Exemples.

- L'élément neutre e est toujours symétrisable, et égal à son propre symétrique puisque e * e = e.
- Dans $\mathscr{F}(\mathbb{R},\mathbb{R})$, un élément f est symétrisable pour \circ si, et seulement si, f est une bijection, et alors son symétrique est la bijection réciproque f^{-1} de f.
- Dans $\mathcal{M}_n(\mathbb{K})$ muni de la multiplication, on retrouve exactement la définition d'une matrice inversible.

Exercice 2 Reprenons l'exemple de la loi de composition interne $x*y = \frac{x+y}{1+xy}$ sur E =]-1,1[. Préciser (s'il existe) son élément neutre, et ses éléments inversibles.

- Propriété 3 —

Soit E un ensemble muni d'une loi associative *, d'élément neutre e.

- Si x est symétrisable, alors x^{-1} l'est aussi, et $(x^{-1})^{-1} = x$.
- Si x et y sont symétrisables, alors x * y l'est aussi, et $(x * y)^{-1} = y^{-1} * x^{-1}$.

- **Propriété 4** (Simplification par un élément inversible) ——

Soit E un ensemble muni d'une loi de composition interne associative *, et soit x un élément symétrisable. Alors:

- $\bullet \ \ \forall (y,z) \in E^2, \quad x*y = x*z \ \Rightarrow \ y = z. \qquad \qquad \bullet \ \ \forall (y,z) \in E^2, \quad y*x = z*x \ \Rightarrow \ y = z.$

On dit alors que x est un élément régulier.

Danger.

Dans (\mathbb{Q}, \times) , (\mathbb{R}, \times) ou (\mathbb{C}, \times) , tout élément non nul est inversible, et on peut donc « simplifier » par tout élément **non nul**.

Attention, cela n'est pas aussi simple dans d'autres situations.

• Dans $(\mathscr{F}(\mathbb{R},\mathbb{R}),\circ)$ par exemple, si $f:x\mapsto 0, g:x\mapsto x$ et $h:x\mapsto |x|$, alors:

$$f \circ g = f \circ h$$
 et $g \circ f = h \circ f$

mais $q \neq h$. L'élément f n'est donc pas régulier, et on ne peut pas « simplifier » par f. Il est cependant possible de « simplifier » par une fonction si celle-ci est bijective.

• Autre exemple dans $(\mathcal{M}_n(\mathbb{K}), \times)$:

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

mais $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$. On ne peut donc pas « simplifier » par $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ qui n'est pas régulier. On peut cependant « simplifier » par toute matrice **inversible**.

Remarque. Soient E un ensemble muni d'une loi de composition interne *, et A une partie de E stable par *. Si * possède un élément neutre dans E, il se peut que ça ne soit pas le cas dans A. De même, un élément de A peut admettre un symétrique dans E pour la loi *, mais pas dans A.

Par exemple, \mathbb{N}^* est une partie stable de \mathbb{Z} pour la loi +. Mais \mathbb{N}^* ne contient pas d'élément neutre, et aucun élément de \mathbb{N}^* ne possède de symétrique dans \mathbb{N}^* . Notons en revanche que tous les éléments de \mathbb{N}^* sont réguliers.

1.3 Itérés d'un élément

Dans cette section, E désigne un ensemble muni d'une loi interne associative * et d'élément neutre e.

Définition.

Soit $x \in E$. On définit les *puissances de x* en posant $x^0 = e$ et pour tout $n \in \mathbb{N}$:

$$x^{n+1} = x^n * x.$$

Ainsi, pour tout $n \in \mathbb{N}^*$: $x^n = \underbrace{x * x * \cdots * x}_{n \text{ fois}}$.

Notation.

Si la loi de E est notée additivement +, on note 0 x = e et pour tout $n \in \mathbb{N}^*$:

$$n x = \underbrace{x + x + \dots + x}_{n \text{ fois}},$$

et on parle plutôt des multiples de x.

Propriété 5

- Soit $x \in E$. Alors pour tout $(m, n) \in \mathbb{N}^2$, $x^m * x^n = x^{m+n}$.
- Soient $x,y\in E$ des éléments qui commutent, c'est-à-dire tels que x*y=y*x, alors pour tout $n\in\mathbb{N}$:

$$(x*y)^n = x^n * y^n.$$

Propriété 6

Soit $x \in E$ un élément inversible. Alors pour tout $n \in \mathbb{N}$, x^n est inversible, et $(x^n)^{-1} = (x^{-1})^n$. On note alors x^{-n} au lieu de $(x^{-1})^n$

- Propriété 7 -

Soit $x \in E$ un élément inversible. Alors pour tout $(m, n) \in \mathbb{Z}^2$, $x^{m+n} = x^m * x^n$.

Remarque. Par conséquent, toutes les puissances de x commutent entre elles puisque m + n = n + m.

2 Groupes

2.1 Définitions et exemples

Définition.

Soit G un ensemble muni d'une loi de composition interne *.

On dit que (G, *) est un groupe si :

- la loi * est associative : $\forall (x, y, z) \in G^3$, x * (y * z) = (x * y) * z;
- la loi * possède un élément neutre : $\exists e \in G, \ \forall x \in G, \ x * e = e * x = x ;$
- tout élément de G est symétrisable pour *: $\forall x \in G, \exists y \in G, x * y = y * x = e$.

Si de plus la loi * est commutative, on dira que (G,*) est un groupe commutatif ou abélien.

Si G est fini, son cardinal Card(G) s'appelle l'ordre de G.

Rappel. D'après les résultats précédemment obtenus, l'élément neutre d'un groupe (G, *) est unique, de même que le symétrique d'un élément.

Notation.

Par convention, on note généralement multiplicativement x * y la loi d'un groupe non commutatif, et on note alors 1_G ou plus simplement 1 son élément neutre.

Pour les groupes abéliens, on note plutôt la loi additivement x + y. Dans ce cas, on note 0_G ou 0 l'élément neutre, -x le symétrique de x et n x au lieu de x^n .

Exemples.

- $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+)$ sont des groupes abéliens. $(\mathbb{N},+)$ n'est pas un groupe.
- (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) sont des groupes abéliens.
- Pour tout $n \geq 1$, (\mathbb{U}_n, \times) est un groupe abélien fini d'ordre n.
- $(\mathcal{M}_{n,p}(\mathbb{K}), +)$ est un groupe abélien.
- $(GL_n(\mathbb{K}), \times)$ est un groupe, non abélien dès que $n \geq 2$.

- Propriété 8 ——

Soit X un ensemble. On note $\mathfrak{S}(X)$ (ou S(X)) l'ensemble des bijections de X dans X.

Alors $(\mathfrak{S}(X), \circ)$ est un groupe, non commutatif dès que X contient au moins trois éléments distincts.

Ce groupe est appelé groupe symétrique de X, et ses éléments sont nommés permutations de X.

⊗ Notation.

Si X = [1, n] avec $n \ge 1$, on notera le groupe symétrique de X plus simplement \mathfrak{S}_n , et on l'appellera groupe symétrique d'indice n. Un élément $\sigma \in \mathfrak{S}_n$ se représente communément sous forme d'un tableau:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}.$$

\right Le saviez-vous ?

Il est fréquent de trouver des propriétés communes dans des situations qui au départ semblent totalement sans rapport. Une des grandes découvertes (et réussites) des mathématiques du 19^{ème} siècle a été de parvenir à unifier ces problèmes en apparence distincts, en faisant ressortir de ces différents problèmes des structures ensemblistes et opératoires ayant des propriétés similaires.

C'est Évariste Galois le premier à mettre en avant ces études de structure à l'occasion de ses travaux visant à étudier la résolubilité des équations polynomiales par radicaux. Il y parle de groupes de permutations des solutions d'une équation, et est amené à étudier des propriétés de certains sous-ensembles de ces groupes de permutations. C'est lui qui introduit la terminologie de « groupe », même si la formalisation précise de cette notion est beaucoup plus tardive.

Soient $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes. On définit sur le produit cartésien $G_1 \times G_2$ la loi de composition interne \star suivante :

$$\forall (g_1, g_2), (g_1', g_2') \in G_1 \times G_2, \ (g_1, g_2) \star (g_1', g_2') = (g_1 *_1 g_1', g_2 *_2 g_2')$$

Alors $(G_1 \times G_2, \star)$ est un groupe, appelé le produit direct des groupes G_1 et G_2 .

De plus, $(G_1 \times G_2, \star)$ est abélien si, et seulement si, $(G_1, *_1)$ et $(G_2, *_2)$ le sont.

Table de Cayley d'un groupe fini.

Lorsque G est un groupe fini dont on note a_1, a_2, \ldots, a_n les éléments, on peut résumer la loi * dans un tableau à n lignes et n colonnes dans lequel on fait figurer à l'intersection de la ligne i et de la colonne jle résultat $a_i * a_j$.

*	a_1	 a_j	 a_n
a_1	$a_1 * a_1$	 $a_1 * a_j$	 $a_1 * a_n$
:	÷	:	:
a_i	$a_1 * a_i$	 $a_i * a_j$	 $a_i * a_n$
:	÷	:	:
a_n	$a_n * a_1$	 $a_n * a_j$	 $a_n * a_n$

Exercice 3 Dresser la table des groupes \mathbb{U}_3 , $\mathbb{U}_2 \times \mathbb{U}_2$ et \mathfrak{S}_3 .

Remarque. Dans la table d'un groupe fini, chaque élément apparaît une et une seule fois sur chaque ligne et chaque colonne. On peut le justifier pour les colonnes en notant que pour tout $g \in G$, l'application $\varphi_g: x \mapsto x * g$ est une bijection de G sur G, d'inverse $\varphi_{g^{-1}}$. Et de même pour les lignes en considérant l'application $\psi_g: x \mapsto g * x$.

2.2 Sous-groupes

Définition.

Soit (G, *) un groupe, et soit H une partie non vide de G.

On dit que H est un sous-groupe de G si H est stable par * et que (H,*) est un groupe.

Exemple. Pour tout groupe G, G et $\{e_G\}$ sont des sous-groupes de G, appelés sous-groupes triviaux de G. À l'inverse, on appelle sous-groupe propre de G tout sous-groupe non trivial de G.

- **Propriété 10** (Première caractérisation d'un sous-groupe) —

Soit (G,*) un groupe, et $H \subset G$. H est un sous-groupe de G si, et seulement si :

(1)
$$e_G \in H$$
;

(2)
$$\forall (x,y) \in H^2, x * y \in H$$
; (3) $\forall x \in H, x^{-1} \in H$.

$$(3) \ \forall x \in H, \ x^{-1} \in H.$$

- Corollaire 11 (Deuxième caractérisation d'un sous-groupe) —

Soit G un groupe, et $H \subset G$. H est un sous-groupe de G si, et seulement si :

(1)
$$e_G \in H$$
;

(2)
$$\forall (x,y) \in H^2, \ x * y^{-1} \in H.$$

Exemples.

- $(\mathbb{R}_{+}^{*}, \times)$ est un sous-groupe de (\mathbb{R}^{*}, \times) . En revanche, $(\mathbb{R}_{-}^{*}, \times)$ n'est pas un sous-groupe de (\mathbb{R}^{*}, \times) .
- L'ensemble \mathbb{U} des nombres complexes de module 1 est un sous-groupe de (\mathbb{C}^*, \times) .
- Pour tout $n \in \mathbb{N}^*$, l'ensemble \mathbb{U}_n des racines n-èmes de l'unité est un sous-groupe de (\mathbb{C}^*, \times) (et de (\mathbb{U},\times) aussi).
- Soit $n \in \mathbb{N}^*$. Notons $\mathscr{D}_n^*(\mathbb{K})$ (resp. $\mathscr{T}_n^*(\mathbb{K})$) l'ensemble des matrices de taille $n \times n$ diagonales inversibles (resp. triangulaires supérieures inversibles). Alors $\mathcal{D}_n^*(\mathbb{K})$ et $\mathcal{T}_n^*(\mathbb{K})$ sont des sous-groupes $\operatorname{de}\left(\operatorname{GL}_{n}(\mathbb{K}),\times\right).$

Méthode. Comment montrer qu'un ensemble est un groupe ?

Pour montrer qu'un ensemble est un groupe, on commencera par se demander s'il ne serait pas un sous-groupe d'un groupe déjà connu. En effet, il sera alors bien plus rapide de prouver les points qui caractérisent un sous-groupe que ceux qui caractérisent un groupe.

Exercice 4 Montrer que $U = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, a \in \mathbb{K} \right\}$ muni du produit matriciel est un groupe.

- Propriété 12 —

Soit $(H_i)_{i\in I}$ une famille de sous-groupes de (G,*). Alors $\bigcap H_i$ est un sous-groupe de G.

Définition.

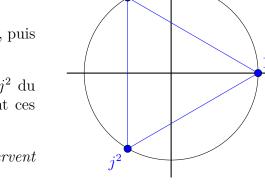
Soit (G, *) un groupe, et $A \subset G$.

Le sous-groupe $\bigcap_{\substack{H \text{ sous-groupe de } G\\ A \subset H}} H \text{ de } G \text{ contenant } A \text{ est appel\'e } sous-groupe \ engendr\'e \ par \ A, \text{ et not\'e } \langle A \rangle.$

Remarque. $\langle A \rangle$ est le plus petit sous-groupe de G au sens de l'inclusion : si K est un sous-groupe contenant A, alors $\langle A \rangle = \bigcap_{\substack{H \text{ sous-groupe de } G \\ A \subset H}} H \subset K$.

Exercice 5 On considère le groupe G des permutations de \mathbb{C} .

- 1. Montrer que $r: z \mapsto jz$ et $s: z \mapsto \overline{z}$ appartiennent à G.
- 2. Déterminer le plus petit sous-groupe H de G contenant r et s, puis donner la table de ce sous-groupe.
- 3. Étudier l'action des éléments de H sur les sommets 1, j et j^2 du triangle équilatéral ci-contre, puis identifier géométriquement ces éléments.



Le groupe H est le groupe des isométries du plan complexe qui conservent le triangle équilatéral de sommets 1, j et j^2 .

Soient (G,*) un groupe, et $g \in G$. Intéressons-nous au sous-groupe engendré par $\{g\}$, qu'on notera simplement $\langle g \rangle$.

- Propriété 13 ————

Soient (G, *) un groupe, et $g \in G$. Alors :

$$\langle g \rangle = \{ g^n, \, n \in \mathbb{Z} \}.$$

Définition.

On dit qu'un groupe (G, *) est $monog\`ene$ s'il existe $g \in G$ tel que $G = \langle g \rangle$. S'il est de plus fini, on dit que (G, *) est cyclique.

Exemples.

- $(\mathbb{Z}, +)$ est monogène, engendré par 1 (ou -1).
- Pour tout $n \ge 1$, \mathbb{U}_n est un groupe cyclique, engendré par $\xi_n = e^{\frac{2i\pi}{n}}$.
- $(\mathbb{R}, +)$ n'est pas monogène : supposons qu'il existe $a \in \mathbb{R}$ tel que $\mathbb{R} = \langle a \rangle = \{ak, k \in \mathbb{Z}\}$. L'élément a est nécessairement non nul, car $\mathbb{R} \neq \{0\}$. Et $\frac{a}{2}$ appartient à \mathbb{R} mais pas à $\langle a \rangle$: sinon, il existerait $k \in \mathbb{Z}$ tel que $\frac{a}{2} = ak$, ce qui aboutirait à 1 = 2k puisque $a \neq 0$. D'où une contradiction.

Propriété 14 ——

Un groupe monogène est abélien.

Conséquence. Soit X un ensemble contenant au moins trois éléments. Alors $(\mathfrak{S}(X), \circ)$ n'est pas abélien, donc pas monogène.

2.3 Morphismes de groupes

Définition.

Soient $(G_1, *)$ et (G_2, \cdot) deux groupes. On appelle morphisme (de groupes) de G_1 dans G_2 toute application $\varphi : G_1 \to G_2$ telle que :

$$\forall x, y \in G, \ \varphi(x * y) = \varphi(x) \cdot \varphi(y).$$

Exemples.

- Pour tout groupe G, id_G est un morphisme de G dans lui-même.
- Si G_1 et G_2 sont deux groupes, alors l'application constante égale à e_{G_2} est un morphisme de G_1 dans G_2 .
- Le module $z \mapsto |z|$ est un morphisme de (\mathbb{C}^*, \times) dans (\mathbb{R}_+^*, \times) .
- L'exponentielle complexe est un morphisme de $(\mathbb{C}, +)$ dans (\mathbb{C}^*, \times) .
- Le logarithme népérien est un morphisme de (\mathbb{R}_+^*, \times) dans $(\mathbb{R}, +)$.
- Pour tout groupe (G,*) et pour tout $g \in G$, $\varphi_g : \begin{matrix} \mathbb{Z} & \to & G \\ n & \mapsto & q^n \end{matrix}$ est un morphisme de $(\mathbb{Z},+)$ dans G.

- Propriété 15 ———

Soient $(G_1,*)$ et (G_2,\cdot) deux groupes, et soit $\varphi:G_1\to G_2$ un morphisme de groupes. Alors :

•
$$\varphi(e_{G_1}) = e_{G_2}$$
;

•
$$\forall x \in G_1, \, \varphi(x^{-1}) = \varphi(x)^{-1}.$$

- Propriété 16 –

Soient $(G_1, *), (G_2, \star)$ et (G_3, \cdot) trois groupes.

Si $f: G_1 \to G_2$ et $g: G_2 \to G_3$ sont deux morphismes de groupes, alors $g \circ f$ est un morphisme de groupes de G_1 dans G_3 .

- Propriété 17 –

Soit φ un morphisme de groupes entre $(G_1, *)$ et (G_2, \cdot) .

- Pour tout sous-groupe H_1 de G_1 , $\varphi(H_1) = \{\varphi(h), h \in H_1\}$ est un sous-groupe de G_2 .
- Pour tout sous-groupe H_2 de G_2 , $\varphi^{-1}(H_2) = \{h \in G_1 \mid \varphi(h) \in H_2\}$ est un sous-groupe de G_1 .

Définition.

Soit φ un morphisme de groupes entre $(G_1, *)$ et (G_2, \cdot) .

• On appelle noyau de φ , et on note $\operatorname{Ker}(\varphi)$ (provient de l'allemand Kern) le sous-groupe de G_1 défini par :

$$\operatorname{Ker}(\varphi) = \varphi^{-1}(\{e_{G_2}\}) = \{g \in G_1 \mid \varphi(g_1) = e_{G_2}\}.$$

• On appelle image de φ , et on note $\operatorname{Im}(\varphi)$ le sous-groupe de G_2 défini par :

$$\operatorname{Im}(\varphi) = \varphi(G_1) = \{ \varphi(g), g \in G_1 \} = \{ h \in G_2 \mid \exists g \in G_1, \varphi(g) = h \}.$$

- Propriété 18 –

Soit φ un morphisme de groupes entre $(G_1, *)$ et (G_2, \cdot) .

- φ est injective si, et seulement si, $Ker(\varphi) = \{e_{G_1}\}.$
- φ est surjective si, et seulement si, $\operatorname{Im}(\varphi) = G_2$.

Exemples.

- Le module $z \mapsto |z|$ est un morphisme surjectif de \mathbb{C}^* dans \mathbb{R}_+^* , de noyau $\{z \in \mathbb{C}^* \mid |z| = 1\} = \mathbb{U}$.
- L'exponentielle complexe est un morphisme surjectif de \mathbb{C} dans \mathbb{C}^* , de noyau $\{z \in \mathbb{C} \mid e^z = 1\} = 2i\pi\mathbb{Z}$.

Définition.

On appelle isomorphisme (de groupes) de G_1 sur G_2 tout morphisme de groupes bijectif de G_1 sur G_2 . Lorsque $G_1 = G_2$, on parle d'automorphisme (de groupe) de G_1 .

On dit que deux groupes G_1 et G_2 sont *isomorphes* lorsqu'il existe un isomorphisme de G_1 sur G_2 .

Exemple. Les groupes (\mathbb{R}_+^*, \times) et $(\mathbb{R}, +)$ sont isomorphes, et le logarithme est un isomorphisme de (\mathbb{R}_+^*, \times) sur $(\mathbb{R}, +)$.

Exercice 6 Montrer que $\varphi: a \mapsto \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ est un isomorphisme de $(\mathbb{K}, +)$ sur (U, \times) .

Propriété 19 –

- Soient G_1 et G_2 deux groupes et $\varphi: G_1 \to G_2$ un isomorphisme de groupes de G_1 sur G_2 . Alors φ^{-1} est un isomorphisme de groupes de G_2 sur G_1 .
- Soit G un groupe. L'ensemble Aut(G) des automorphismes de groupe de G est un groupe pour la composition.

Remarque. Deux groupes finis G_1 et G_2 sont isomorphes si, et seulement si, la table du groupe G_2 est identique à celle du groupe G_1 à « renumérotation » près des éléments de G_2 à l'aide des éléments de G_1 .

Exercice 7 Montrer que le groupe \mathfrak{S}_3 est isomorphe au groupe des isométries conservant le triangle équilatéral de sommets 1, j et j^2 , et exhiber un tel isomorphisme entre ces deux groupes.

En pratique, on considère comme analogues en algèbre des groupes qui sont isomorphes. Un objectif de la théorie est alors de déterminer les groupes à isomorphismes près.

Exercice 8 Déterminer à isomorphisme près tous les groupes de cardinal 2 et 3.

P Le saviez-vous?

Un résultat remarquable est la classification à isomorphismes près des groupes finis dits « simples » (l'équivalent des nombres premiers en théorie des groupes), achevée en 1981. C'est en fait un ensemble de travaux, comprenant des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs. On trouve dans cette classification des groupes qui vous sont déjà familiers, les groupes cycliques \mathbb{U}_p avec p premier, mais également des structures bien plus complexes, tel que le Monstre de Fischer, de cardinal :

$$2^{46} \times 3^{20} \times 5^9 \times 7^6 \times 11^2 \times 13^3 \times 17 \times 19 \times 23 \times 29 \times 31 \times 41 \times 47 \times 59 \times 71 \ (\simeq 8 \times 10^{53}).$$

3 Généralités sur les anneaux

3.1 Définitions et exemples

Définition.

Soit A un ensemble muni de deux lois internes notées + et \times . On dit que $(A, +, \times)$ est un anneau (unitaire) si :

- (i) (A, +) est un groupe abélien, dont l'élément neutre est noté 0_A ;
- (ii) la loi \times est associative et possède un élément neutre 1_A ;
- (iii) la loi × est distributive par rapport à la loi +.

Si de plus la loi \times est commutative, on dit que $(A, +, \times)$ est un anneau commutatif.

Exemples.

- $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$ sont des anneaux commutatifs.
- $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau non commutatif si $n \geq 2$.
- Soit $(A, +, \times)$ un anneau, et soit E un ensemble. On définit sur l'ensemble $\mathscr{F}(E, A) = A^E$ des fonctions de E dans A deux lois de compositions internes encore notées + et \times en posant pour tout $f, g \in \mathscr{F}(E, A)$:

$$- \forall x \in E, (f+g)(x) = f(x) + g(x); \qquad - \forall x \in E, (f \times g)(x) = f(x) \times g(x).$$

On vérifie que $\mathscr{F}(E,A)$ muni de ces deux opérations + et \times est un anneau, commutatif si, et seulement si, A l'est.

En particulier, les ensembles $(\mathscr{F}(I,\mathbb{R}),+,\times)$ et $(\mathscr{F}(I,\mathbb{C}),+,\times)$, où I est un intervalle non vide, sont des anneaux commutatifs, de même que $(\mathbb{R}^{\mathbb{N}}, +, \times)$ et $(\mathbb{C}^{\mathbb{N}}, +, \times)$.

- Propriété 20 (Règles de calcul dans un anneau) –

Soit $(A, +, \times)$ un anneau, et soient $a, b \in A$. Alors :

- $a \times 0_A = 0_A \times a = 0_A$;
- $a \times (-b) = (-a) \times b = -(a \times b)$;
- Plus généralement, pour tout $n \in \mathbb{Z}$, $a \times (nb) = (na) \times b = n(a \times b)$.

🤼 Mise en garde.

Attention aux notations : si $a \in A$ et $n \in \mathbb{N}$, n a désigne l'élément $\underbrace{a + a + \cdots + a}_{n \text{ fois}}$, alors que $a^n =$

$$\underbrace{a \times a \times \cdots \times a}_{f}$$

 $\underbrace{a \times a \times \cdots \times a}_{n \text{ fois}}.$ Pour $n \in \mathbb{Z} \setminus \mathbb{N}$, n a désigne l'élément $\underbrace{(-a) + (-a) + \cdots + (-a)}_{|n| \text{ fois}}$, et a^n n'est défini que si a possède $\underbrace{(-a) + (-a) + \cdots + (-a)}_{n \text{ fois}},$

Remarque. Dans la définition d'anneau, rien n'interdit que $1_A = 0_A$. Si c'est le cas, alors pour tout $a \in A$, $a = a \times 1_A = a \times 0_A = 0_A$, et donc $A = \{0_A\}$ est l'anneau nul, qui n'a pas un gros intérêt.

- Propriété 21 ——

Soit $(A, +, \times)$ un anneau, et soient $a, b \in A$ deux éléments qui **commutent**, c'est-à-dire tels que $a \times b = b \times a$. Alors pour tout $n \in \mathbb{N}$:

•
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
;

•
$$a^n - b^n = (a - b) \times \sum_{k=0}^{n-1} a^k b^{n-1-k}$$
.

3.2 Sous-anneaux

Définition.

Soit $(A, +, \times)$ un anneau et soit B une partie non vide de A. On dit que B est un sous-anneau de A si B contient 1_A , B est stable à la fois pour + et pour ×, et que $(B, +, \times)$ est un anneau.

- **Propriété 22** (Caractérisation d'un sous-anneau) —

Une partie B d'un anneau $(A, +, \times)$ est un sous-anneau de A si, et seulement si :

- (i) $1_A \in B$;
- (ii) B est un sous-groupe de (A, +): $\forall (x, y) \in B^2$, $x y \in B$;
- (iii) B est stable par multiplication : $\forall (x,y) \in B^2, x \times y \in B$.

Exemples.

- $(\mathbb{Z}, +, \times)$ est un sous-anneau de $(\mathbb{Q}, +, \times)$, qui est lui-même un sous-anneau de $(\mathbb{R}, +, \times)$, qui est lui-même un sous-anneau de $(\mathbb{C}, +, \times)$.
- L'ensemble $2\mathbb{Z}$ des entiers pairs n'est pas un sous-anneau de $(\mathbb{Z}, +, \times)$: bien qu'il en soit un sousgroupe et qu'il soit stable par multiplication, il ne contient pas le neutre multiplicatif 1 de Z.
- Soit $n \in \mathbb{N}^*$ L'ensemble $\mathscr{T}_n(\mathbb{K})$ des matrices triangulaires supérieures de $\mathscr{M}_n(\mathbb{K})$ est un sous-anneau de $(\mathcal{M}_n(\mathbb{K}), +, \times)$.
- L'ensemble $\mathscr{C}(\mathbb{R},\mathbb{R})$ est un sous-anneau de $(\mathscr{F}(\mathbb{R},\mathbb{R}),+,\times)$.
- L'ensemble des suites convergentes est un sous-anneau de $(\mathbb{R}^{\mathbb{N}}, +, \times)$.

Mise en garde.

Ne pas oublier la condition $1_A \in B$ dans la caractérisation des sous-anneaux : par exemple, B = $\left\{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}, x \in \mathbb{R} \right\}$ est un sous-groupe additif de $\mathcal{M}_2(\mathbb{R})$, stable par produit et admet $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ pour élément neutre multiplicatif. Ainsi, $(B, +, \times)$ est un anneau, mais ce n'est pas un sous-anneau de $(\mathcal{M}_2(\mathbb{R}), +, \times)$: ils n'ont pas le même élément neutre, et leurs inversibles (qu'on définit dans la section suivante) n'ont aucun rapport.

Exercice 9 Montrer que l'ensemble $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}$ est un sous-anneau de $(\mathbb{C}, +, \times)$.

Diviseurs de zéro 3.3

Définition.

Soit $(A, +, \times)$ un anneau et $a \in A$ différent de 0_A . On dit que a est un diviseur de zéro s'il existe $b \in A$ différent de 0_A tel que $a \times b = 0_A$ ou $b \times a = 0_A$.

Exemples.

• Soit $n \geq 2$. Dans $(\mathcal{M}_n(\mathbb{K}), +, \times)$, toute matrice M nilpotente non nulle est un diviseur de zéro, puisque si on note p son indice de nilpotence, alors $M \times \underbrace{M^{p-1}}_{\neq 0_n} = 0_n$.

Plus généralement, si $A \in \mathcal{M}_n(\mathbb{K})$ est non inversible, avec $A \neq 0_n$, alors A est un diviseur de zéro : en effet, puisque A n'est pas inversible, il existe $X \in \mathcal{M}_{n,1}(\mathbb{K})$ non nul tel que $AX = 0_{n,1}$. Et alors, si B est la matrice de $\mathcal{M}_n(\mathbb{K})$ dont toutes les colonnes sont égales à X, alors $A \times B = 0_n$ (toutes ses colonnes sont égales à $AX = 0_{n,1}$).

• L'anneau non commutatif $(\mathscr{F}(\mathbb{R},\mathbb{R}),+,\circ)$ possède des diviseurs de zéro, par exemple la fonction $f: x \mapsto \max(x,0)$, puisque si $g: x \mapsto -x^2$, alors pour tout $x \in \mathbb{R}$:

$$f \circ g(x) = \max(-x^2, 0) = 0.$$

Définition.

Un anneau commutatif $(A, +, \times)$ est dit *intègre* s'il est non nul et ne possède pas de diviseurs de zéro. Autrement dit, $(A, +, \times)$ est intègre si $A \neq \{0_A\}$ et si

$$\forall (a,b) \in A^2, \ a \times b = 0_A \implies (a = 0_A \text{ ou } b = 0_A).$$

Exemples.

- Si $(A, +, \times)$ est un anneau intègre, alors tout sous-anneau de A est un anneau intègre.
- $(\mathbb{C}, +, \times)$ est intègre, de même que $(\mathbb{R}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{Z}, +, \times)$.
- L'anneau $(\mathbb{R}^{\mathbb{N}}, +, \times)$ des suites réelles est non intègre : en effet, considérons par exemple les suites (u_n) et (v_n) définies pour tout $n \in \mathbb{N}$ par $u_n = 1 + (-1)^n$ et $v_n = 1 (-1)^n$. Alors (u_n) et (v_n) ne sont pas nulles, mais pour tout $n \in \mathbb{N}$:

$$u_n \times v_n = (1 + (-1)^n)(1 - (-1)^n) = 1^2 - (-1)^{2n} = 0,$$

de sorte que $(u_n v_n)$ est la suite nulle.

• On montre de manière similaire que $(\mathscr{F}(I,\mathbb{R}),+,\times)$ et $(\mathscr{F}(I,\mathbb{C}),+,\times)$, où I est un intervalle non vide et non réduit à un point, sont des anneaux non intègres.

3.4 Éléments inversibles

Définition.

Soit $(A, +, \times)$ un anneau. On dit qu'un élément $a \in A$ est *inversible* s'il possède un inverse pour la loi \times , c'est-à-dire s'il existe $b \in A$ tel que $a \times b = b \times a = 1_A$.

Notation.

Si $a \in A$ est inversible, son inverse est unique par associativité de \times . On le note x^{-1} .

L'ensemble des éléments inversibles de A se note A^* , ou encore $\mathcal{U}(A)$ (on parle parfois d'unités au lieu d'inversibles).

Exemples.

- 1_A est toujours inversible, de sorte que 1_A ∈ W(A).
 En revanche, si A n'est pas l'anneau nul, 0_A n'est pas inversible (car a × 0_A = 0_A ne peut jamais être égal à 1_A), et donc W(A) ⊂ A \ {0}.
- $\mathscr{U}(\mathbb{Z}) = \{-1, 1\}.$
- Dans $(\mathcal{M}_n(\mathbb{K}), +, \times)$ les éléments inversibles sont bien les matrices que nous avons appelées inversibles. Et nous avons alors noté $GL_n(\mathbb{K})$ l'ensemble $\mathscr{U}(\mathcal{M}_n(\mathbb{K}))$.

Exercice 10 Déterminer les éléments inversibles de $\mathbb{Z}[i]$.

Mise en garde.

Ne pas confondre A^{\times} , l'ensemble des inversibles de $(A, +, \times)$, et $A \setminus \{0_A\}$. Comme dit précédemment, on a l'inclusion $A^{\times} \subset A \setminus \{0_A\}$, mais l'inclusion réciproque est en générale fausse (elle sera vraie si, et seulement si, A est un corps, ce que nous définirons ci-dessous).

Pour éviter cette confusion, on privilégiera la notation $\mathcal{U}(A)$ pour l'ensemble des inversible de A.

- Propriété 23 ——

Si $a \in A$ est inversible, alors a n'est pas un diviseur de zéro.

- Propriété 24 ——

Soit $(A, +, \times)$ un anneau. Alors $(\mathcal{U}(A), \times)$ est un groupe, appelé groupe des inversibles (ou groupe des unités) de A.

Ce groupe est commutatif si A est un anneau commutatif.

Morphismes d'anneaux 3.5

Définition.

Soient $(A, +_A, \times_A)$ et $(B, +_B, \times_B)$ des anneaux d'éléments neutres multiplicatifs respectivement notés

Une application $f: A \to B$ est un morphisme d'anneaux si :

- $\forall (x,y) \in A^2$, $f(x +_A y) = f(x) +_B f(y)$;
- $\forall (x,y) \in A^2$, $f(x \times_A y) = f(x) \times_B f(y)$;
- $f(1_A) = 1_B$.

Lorsque f est bijective, on parle d'isomorphisme d'anneaux.

Remarques.

- On pensera à bien vérifier la condition $f(1_A) = 1_B$. En effet, elle ne découle pas directement du second point. Et par exemple, si B n'est pas l'anneau nul, l'application nulle vérifie les deux premiers points, mais pas le troisième et n'est donc pas un morphisme d'anneaux.
- Le premier point nous dit notamment que f est un morphisme de groupe entre les groupes abéliens $(A, +_A)$ et $(B, +_B)$. Et donc $f(0_A) = 0_B$ et pour tout $x \in A$, f(-x) = -f(x). Et comme tous les morphismes de groupes f est injectif si, et seulement si, son noyau est réduit à $\{0_A\}$.
- En revanche, f n'est pas un morphisme de groupes pour la multiplication car A et B ne sont même pas des groupes. On a cependant le résultat suivant.

Propriété 25

Soit $f:A\to B$ un morphisme d'anneaux. Alors $f(\mathscr{U}(A))\subset \mathscr{U}(B)$ et pour tout $x\in \mathscr{U}(A)$, $f(x)^{-1}=f(x^{-1})$.

Ainsi, $f_{|\mathscr{U}(A)}$ est un morphisme de groupes de $(\mathscr{U}(A), \times)$ dans $(\mathscr{U}(B), \times)$.

Remarque. Comme dans le cas des groupes, la composée de deux morphismes d'anneaux est un morphisme d'anneaux et l'image directe/réciproque d'un sous-anneau par un morphisme d'anneau est un sous-anneau. On définit également les notions d'isomorphisme d'anneaux, d'automorphisme d'anneau et d'anneaux isomorphes. Il reste vrai que la composée de deux isomorphismes est un isomorphisme et que la réciproque d'un isomorphisme est un isomorphisme.

Exemple. La conjugaison complexe $z \longmapsto \bar{z}$ est un automorphisme d'anneau de $(\mathbb{C}, +, \times)$.

Exercice 11 Soit $f: \mathbb{C} \to \mathcal{M}_2(\mathbb{R})$ l'application qui à $z = a + ib \in \mathbb{C}$ associe $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Montrer que f est un morphisme d'anneaux injectif.

4 Corps commutatifs

Définition.

Un anneau commutatif $(\mathbb{K}, +, \times)$ est un corps si tout élément non nul de \mathbb{K} est inversible.

Remarques.

- Un anneau commutatif $(\mathbb{K}, +, \times)$ est un corps si, et seulement si, $\mathscr{U}(\mathbb{K}) = \mathbb{K} \setminus \{0_{\mathbb{K}}\}.$
- Dans un corps, tout élément non nul étant inversible, il n'y a pas de diviseur de zéro : un corps est intègre.

Exemples.

- \mathbb{Q} , \mathbb{R} et \mathbb{C} munis des opérations habituelles sont des corps.
- $(\mathbb{Z}, +, \times)$ n'est pas un corps car $\mathscr{U}(\mathbb{Z}) = \{-1, 1\} \neq \mathbb{Z} \setminus \{0\}.$

Exercice 12 Montrer que l'ensemble $\mathbb{Q}(i) = \{a + ib, a, b \in \mathbb{Q}\}$ est un corps.

Remarque. Les corps seront le bon cadre pour faire de l'algèbre linéaire, et par exemple, tout ce que nous avons dit sur les matrices à coefficients dans $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ reste valable dans un corps quelconque.

5 Une brève introduction à $\mathbb{Z}/n\mathbb{Z}$

Le contenu de ce paragraphe est hors programme (vous y reviendrez en deuxième année si vous allez en MP). C'est cependant une belle occasion de mettre en pratique les définitions et résultats de ce chapitre.

Soit $n \in \mathbb{N}^*$. Rappelons que l'on dispose d'une relation d'équivalence sur \mathbb{Z} qui est la relation de congruence modulo n:

$$a \equiv b[n] \Leftrightarrow \exists k \in \mathbb{Z}, a - b = kn \Leftrightarrow n \mid (a - b).$$

Si $a \in \mathbb{Z}$, on note \overline{a} sa classe d'équivalence, de sorte que :

$$\overline{a} = \{b \in \mathbb{Z} \mid \exists k \in \mathbb{Z}, b = a + kn\} = a + n\mathbb{Z}.$$

Notons $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient, c'est-à-dire l'ensemble des classes d'équivalence pour la relation de congruence. Nous avions montré qu'il y a exactement n classes d'équivalence pour la congruence modulo n, qui sont $\overline{0}, \overline{1}, \ldots, \overline{n-1}$. Ainsi :

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$$

Nous allons à présent définir deux lois de compositions internes sur $\mathbb{Z}/n\mathbb{Z}$.

- Propriété 26 (LCI sur l'ensemble quotient $\mathbb{Z}/n\mathbb{Z}$) —

On définit deux lois de compositions internes \oplus et \otimes sur $\mathbb{Z}/n\mathbb{Z}$ en posant, pour tout $a, b \in \mathbb{Z}$:

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$
 et $\overline{a} \otimes \overline{b} = \overline{a \times b}$.

Le triplet $(\mathbb{Z}/n\mathbb{Z}, \oplus, \otimes)$ est un anneau commutatif d'éléments neutres $\overline{0}$ pour \oplus et $\overline{1}$ pour \otimes .

Notation.

On notera plus simplement + et \times ces deux lois \oplus et \otimes , mais on veillera à ne pas les confondre avec les opérations dans \mathbb{Z} .

Exercice 13 Écrire les tables des opérations des anneaux $\mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z}$.

- **Propriété 27** (Étude du groupe abélien $(\mathbb{Z}/n\mathbb{Z},+)$) -

Le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ est cyclique, isomorphe à (\mathbb{U}_n, \times) .

- Propriété 28 (Morphisme canonique d'anneaux de $\mathbb Z$ dans $\mathbb Z/n\mathbb Z$) -

L'application $\pi: \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z}/n\mathbb{Z} \\ k & \mapsto & \overline{k} \end{array}$ est un morphisme d'anneaux surjectif, de noyau $n\mathbb{Z}$.

- **Propriété 29** (Inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$) –

- Soit $a \in \mathbb{Z}$. Alors \overline{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ si, et seulement si, $a \wedge n = 1$.
- Les assertions suivantes sont équivalentes :
 - (i) $\mathbb{Z}/n\mathbb{Z}$ est un corps;
- (ii) $\mathbb{Z}/n\mathbb{Z}$ est intègre ;
- (iii) n est premier.

Exercice 14 L'anneau $\mathbb{Z}/10\mathbb{Z}$ est-il intègre? L'élément $\overline{7}$ est-il inversible dans $\mathbb{Z}/10\mathbb{Z}$? Si oui, déterminer son inverse.