Feuille de TD n° 5

Raisonnements mathématiques

Exercice 1. Examen du 11 janvier 2011

Soit a et b deux réels tels que a>0 et $a+b\geq 0$. Montrer par récurrence que, pour tout $n\in \mathbb{N}^*$:

$$(a+b)^n \ge a^n + na^{n-1}b.$$

Exercice 2. Examen du 12 janvier 2010

On considère les deux énoncés suivants, dans lesquels les variables sont astreintes à l'ensemble des entiers naturels :

$$P[n]: 4^n - 1$$
 est divisible par 3,

$$Q[n]: 4^n + 1$$
 est divisible par 3.

1. Démontrer que les deux énoncés suivants sont vrais :

$$\forall k(P[k] \Rightarrow P[k+1]),$$

$$\forall k(Q[k] \Rightarrow Q[k+1]).$$

- 2. L'énoncé $\forall nP[n]$ est-il vrai?
- 3. L'énoncé $\forall nQ[n]$ est-il vrai?

Exercice 3.

- 1. Démontrer l'irrationalité de $\sqrt{2}$ et de $\sqrt{6}$.
- 2. En déduire que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.
- 3. Montrer que $ln(3)/ln(2) \notin \mathbb{Q}$.

Exercice 4. Partiel du 19 novembre 2011

Les variables sont astreintes à \mathbb{N} . Énoncer la contraposée de la proposition suivante, puis la démontrer :

$$\forall a \forall b (a^2 \le b^2 \Rightarrow a \le b)$$

Exercice 5. Montrer que chacun des ensembles suivants est un intervalle que vous calculerez.

$$I = \bigcap_{n=1}^{+\infty} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right[\text{ et } J = \bigcup_{n=2}^{+\infty} \left[1 + \frac{1}{n}, n \right].$$

Exercice 6. Soit E un espace vectoriel (sur \mathbb{R} ou \mathbb{C}), et soient F et G deux sous-espaces de E. Montrer que

 $F \cup G$ est un sous-espace vectoriel de $E \Leftrightarrow F \subseteq G$ ou $G \subseteq F$.

Exercice 7. Démontrer que, pour tout polynôme $P \in \mathbb{R}[X]$, l'équation

$$P(x) = exp(x)$$

ne peut avoir qu'un nombre fini de solutions dans \mathbb{R} .

Exercice 8. Caractérisation séquentielle de la limite

Soit f une application d'un intervalle I de \mathbb{R} à valeur dans \mathbb{R} , et soit $a \in I$.

- 1. Montrer que $\lim_{x\to a} f(x) = f(a)$ si et seulement si pour toute suite $(u_n)_{n\in\mathbb{N}}$ d'éléments de I qui converge vers a, $\lim_{n\to+\infty} f(u_n) = f(a)$.
- 2. En déduire que $x\mapsto \sin(\sqrt{x})$ n'a pas de limite quand x tend vers $+\infty$. De même, montrer que $x\mapsto\cos\left(\frac{1}{x^2}\right)$ n'a pas de limite quand x tend vers 0.

Exercice 9.

- 1. Montrer que si p, p + 2 et p + 4 sont premiers, alors p = 3.
- 2. En déduire que 5 est le seul nombre premier qui est somme et différence de nombres premiers.

Exercice 10. Soit $f:[0,1] \to [0,1]$ une application croissante. On considère l'ensemble

$$E = \{x \in [0,1] | f(x) > x\}.$$

Montrer que E possède une borne supérieure b, puis que f(b) = b.