Rappels: Équations différentielles d'ordre 1 et 2

 \mathbb{K} désigne le corps des réels \mathbb{R} ou des complexes \mathbb{C} .

I) Équations différentielles linéaires du premier ordre

Définition 1 Soient I un intervalle, $a,b:I\to\mathbb{K}$ deux fonctions continues sur I. On appelle **équation** différentielle linéaire d'ordre 1 l'équation

(E)
$$y'(t) + a(t)y(t) = b(t)$$
.

Une fonction dérivable sur I satisfaisant (E) est appellée solution. Si b=0, on dit que l'équation est **homogène**. À (E) on peut associer l'équation homogène

$$(E_0)$$
 $y'(t) + a(t)y(t) = 0.$

Proposition 2 🌲

- 1. L'ensemble des solutions S_0 de (E_0) est stable par combinaison linéaire. En d'autres termes, S_0 est un \mathbb{K} -espace vectoriel.
- 2. Si f_0 est une solution de (E), alors les solutions de (E) sont de la forme $f_0 + h$ où $h \in S_0$. En d'autres termes, l'ensemble des solutions de (E) est un espace affine passant par f_0 et de direction l'espace vectoriel S_0 .

Proposition 3 Les solutions sur \mathbb{R} de y'(t) + ay(t) = 0 où $a \in \mathbb{K}$ sont les fonctions : $t \mapsto \lambda \exp(-at)$ avec $\lambda \in \mathbb{K}$.

Proposition 4 \spadesuit Les solutions sur I de y'(t) + a(t)y(t) = 0 où a est une fonction continue sur I sont les fonctions de la forme (A désigne une primitive de a) : $t \mapsto \lambda \exp(-A(t))$ avec $\lambda \in \mathbb{K}$.

Proposition 5 Principe de superposition \spadesuit

Si f_1 est une solution de $y'(t) + a(t)y(t) = b_1(t)$, et si f_2 est une solution de $y'(t) + a(t)y(t) = b_2(t)$, alors $\forall \alpha, \beta \in \mathbb{K}$, $\alpha f_1 + \beta f_2$ est une solution de

$$y'(t) + a(t)y(t) = \alpha b_1(t) + \beta b_2(t).$$

Remarque 6 Méthode de variation de la constante

Consiste à chercher une solution particulière sous la forme $y(t) = \lambda(t)y_0(t)$ où y_0 est une solution non nulle de l'équation homogène.

II) Équations différentielles linéaires du second ordre à coefficients constants

Définition 7 On appelle équation différentielle linéaire d'ordre 2 à coefficients constants une équation de la forme

(E)
$$ay''(t) + by'(t) + cy(t) = f(t),$$

où $a, b, c \in \mathbb{K}$, $a \neq 0$, et $f: I \to \mathbb{K}$ continue (I intervalle). Une fonction deux fois dérivable sur \mathbb{I} satisfaisant (E) est appellée solution. Si f = 0, on dit que l'équation est **homogène**. À (E) on peut associer l'**équation homogène**

$$(E_0)$$
 $ay''(t) + by'(t) + cy(t) = 0.$

Proposition 8 🌲

- 1. L'ensemble des solutions S_0 de (E_0) est stable par combinaison linéaire. En d'autres termes, S_0 est un \mathbb{K} -espace vectoriel.
- 2. Si f_0 est une solution de (E), alors les solutions de (E) sont de la forme $f_0 + h$ où $h \in S_0$. En d'autres termes, l'ensemble des solutions de (E) est un espace affine passant par f_0 et de direction l'espace vectoriel S_0 .

Proposition 9 \spadesuit Pour $r \in \mathbb{K}$, la fonction $t \mapsto e^{rt}$ est solution de (E_0) ssi $ar^2 + br + c = 0$. Cette équation est appelée équation caractéristique de (E_0) .

1) Cas complexe

Proposition 10 1. Si l'équation caractéristique $ar^2 + br + c = 0$ a deux racines distinctes r_1 et r_2 , les solutions de (E_0) sont les fonctions de la forme

$$t \mapsto \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t} \ avec \ (\lambda_1, \lambda_2) \in \mathbb{C}^2.$$

2. Si l'équation caractéristique $ar^2 + br + c = 0$ a une racine double r_0 , les solutions de (E_0) sont les fonctions de la forme

$$t \mapsto (\lambda_1 + \lambda_2 t)e^{r_0 t} \ avec \ (\lambda_1, \lambda_2) \in \mathbb{C}^2.$$

2) Cas réel

Proposition 11 1. Si l'équation caractéristique $ar^2 + br + c = 0$ a deux racines réelles distinctes r_1 et r_2 , les solutions de (E_0) sont les fonctions de la forme

$$t \mapsto \lambda_1 e^{r_1 t} + \lambda_2 e^{r_2 t} \ avec \ (\lambda_1, \lambda_2) \in \mathbb{R}^2.$$

2. Si l'équation caractéristique $ar^2 + br + c = 0$ a une racine double r_0 , les solutions de (E_0) sont les fonctions de la forme

$$t \mapsto (\lambda_1 + \lambda_2 t)e^{r_0 t} \ avec \ (\lambda_1, \lambda_2) \in \mathbb{R}^2.$$

3. Si l'équation caractéristique $ar^2 + br + c = 0$ a deux racines complexes conjuguées distinctes $\alpha \pm i\beta$, les solutions de (E_0) sont les fonctions de la forme

$$t \mapsto (\lambda_1 \cos(\beta t) + \lambda_2 \sin(\beta t))e^{\alpha t} \ avec \ (\lambda_1, \lambda_2) \in \mathbb{R}^2.$$

3) Résolution de l'équation complète

Proposition 12 Principe de superposition •

Si g_1 est une solution de $ay''(t)+by'(t)+cy(t)=f_1(t)$, et si g_2 est une solution de $ay''(t)+by'(t)+cy(t)=f_2(t)$, alors $\forall \alpha, \beta \in \mathbb{K}$, $\alpha g_1 + \beta g_2$ est une solution de

$$ay''(t) + by'(t) + cy(t) = \alpha f_1(t) + \beta f_2(t).$$

Proposition 13 Si P est un polynôme de degré n, l'équation différentielle

$$ay''(t) + by'(t) + cy(t) = e^{\alpha t}P(t)$$

possède comme solution particulière, une fonction de la forme $y(t) = e^{\alpha t} t^m Q(t)$ où m est l'ordre de multiplicité de α comme racine de l'équation caractéristique, et Q est un polynôme de degré n.