ECG2 - Maths approfondies Semaine 6, colle du 06/11/2023 Lycée Louis Pergaud

Colle 1. Ruby Flajoulot

Exercice 1

Toutes les variables aléatoires considérées dans cet exercice sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

Soient λ et p deux réels tels que $\lambda > 0$ et 0 .

On considère le couple de variables aléatoires (X,Y) à valeurs dans \mathbb{N}^2 , de loi définie pour tout $(k,n)\in\mathbb{N}^2$ par :

$$P(X=n,Y=k) = \begin{cases} \frac{e^{-\lambda}\lambda^n p^k (1-p)^{n-k}}{k!(n-k)!} & \text{si } 0 \le k \le n \\ 0 & \text{sinon.} \end{cases}$$

- 1. Vérifier que la relation ci-dessus définit bien une loi de probabilité sur \mathbb{N}^2 .
- 2. Déterminer la loi marginale de la variable aléatoire X, puis celle de la variable aléatoire Y. Les variables aléatoires X et Y sont-elles indépendantes ?
- 3. Déterminer la loi conditionnelle de la variable aléatoire Y, sachant que [X=n] est réalisé.
- 4. Soit Z la variable aléatoire définie par Z = X Y. Déterminer la loi de la variable aléatoire Z.
- 5. Les variables aléatoires Y et Z sont-elles indépendantes ?

Colle 2. Théo Mary

Exercice 2

Toutes les variables aléatoires de l'exercice sont définies sur un même espace probabilisé (Ω, \mathcal{A}, P) .

On considère une urne qui contient trois boules : une blanche, une noire et une rouge.

On effectue des tirages au hasard d'une boule avec remise dans cette urne.

On note X le numéro du tirage où pour la première fois on a obtenu une boule blanche, et Y le numéro du tirage où pour la première fois on a obtenu une boule noire.

On note également U = |X - Y| et $W = \min(X, Y)$.

- 1. Déterminer la loi de X, son espérance et sa variance.
- 2. Déterminer la loi de W, son espérance et sa variance.
- 3. À partir de cette question et jusqu'à la question 5, on admet que pour $k \in \mathbb{N}^*$, la loi conditionnelle de U sachant [W=k] est la loi géométrique de paramètre $\frac{1}{3}$. Que peut-on en déduire sur la loi de U et sur le couple (U,W)?
- 4. Que représente la variable aléatoire U+W? En déduire une relation linéaire entre U, W, X et Y.
- 5. En déduire la valeur de la covariance de X et de Y. Expliquer de manière probabiliste le signe de la valeur obtenue.
- 6. Justifier l'affirmation de la question 3, à savoir que, pour tout $k \in \mathbb{N}^*$, la loi conditionnelle de U sachant [W=k] est la loi géométrique de paramètre $\frac{1}{3}$.

On cherchera au préalable la loi du couple (X,Y).

Colle 3. Matheo Morvan

Exercice 3

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}$. Soit $u \in \mathcal{L}(E)$. On suppose qu'il existe $x_0 \in E$ tel que $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est une base de E.

- 1. Justifier l'existence et l'unicité de $(p_0, \dots, p_{n-1}) \in \mathbb{R}^n$ tel que : $u^n(x_0) = p_0 x_0 + p_1 u(x_0) + \dots + p_{n-1} u^{n-1}(x_0).$
- 2. On pose $P = X^n p_{n-1}X^{n-1} \dots p_1X p_0$.
 - (a) Montrer que P est un polynôme annulateur de u.
 - (b) À l'aide du théorème de division euclidienne, montrer que tout polynôme annulateur de u est un multiple de P.
- 3. On pose $\mathbb{R}[u] = \{Q(u), Q \in \mathbb{R}[x]\}.$
 - (a) À l'aide du théorème de division euclidienne, montrer que $\mathbb{R}[u] = \{Q(u), \ Q \in \mathbb{R}_{n-1}[x]\}.$
 - (b) Montrer que la famille $(\mathrm{Id}_E, u, \dots, u^{n-1})$ est libre. En déduire la dimension de $\mathbb{R}[u]$.
- 4. On note $\mathscr{C}(u)$ le commutant de u, c'est-à-dire l'ensemble des endomorphismes de E qui commutent avec u. Montrer que $\mathscr{C}(u)=\mathbb{K}[u].$