Colle 1. Rihab Khalloufi

Exercice 1

On effectue une succession infinie de lancers d'une pièce équilibrée. A chaque lancer, à partir du deuxième, si le côté obtenu est différent du côté obtenu au lancer précédent, on marque un point.

Pour $n \geq 2$, soit X_n la variable aléatoire égale au nombre de points obtenus à l'issu de n lancers.

- 1. Soit $n \ge 2$, quel est l'ensemble des valeurs prises par X_n ? Déterminer $P(X_n = 0)$ et $P(X_n = n 1)$.
- 2. Soit $n \ge 2$, soit $k \in [1, n]$, montrer que :

$$P(X_{n+1} = k) = \frac{1}{2}P(X_n = k) + \frac{1}{2}P(X_n = k - 1).$$

3. Soit $n \geq 2$. On pose :

$$Q_n: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ Q_n: & & \sum_{k=0}^{n-1} P(X_n = k) s^k \end{array}$$

- (a) Soit $n \geq 2$. Calculer $Q_n(1)$ et montrer que $Q'_n(1) = E(X_n)$. Exprimer $V(X_n)$ à l'aide de la fonction Q_n .
- (b) Montrer que, pour tout $n \geq 2$, pour tout $s \in \mathbb{R}$:

$$Q_{n+1}(s) = \frac{(1+s)}{2}Q_n(s).$$

En déduire une expression de $Q_n(s)$ en fonction de n et de s.

(c) Calculer alors, pour tout $n \geq 2$, l'espérance et la variance de X_n .

Colle 2. Malak Lokhnati

Exercice 2

Dans $\mathbb{R}_4[X]$, on pose $F = \{P \in \mathbb{R}_4[X] : P(0) = 0\}$, $G = \{P \in \mathbb{R}_4[X] : P(4) = 0\}$ et $H = F \cap G$.

- 1. Montrer que F est un sous-espace vectoriel de $\mathbb{R}_4[X]$ et en donner une base.
- 2. Montrer que G est un sous-espace vectoriel de $\mathbb{R}_4[X]$ et en donner une base formée de puissances de (X-4).
- 3. Montrer que $H = \{X(X-4) \times Q, Q \in \mathbb{R}_2[X]\}$. En déduire une base de H.
- 4. Déterminer un supplémentaire de H dans E.