ECG2 - Maths approfondies Semaine 14, colle du 15/01/2024 Lycée Louis Pergaud

Colle 1. Ruby Flajoulot

Question de cours. Loi faible des grands nombres.

Exercice 1

Soit σ un réel strictement positif. Pour tout $n \in \mathbb{N}^*$, on considère la fonction f_n définie sur \mathbb{R} par :

$$f_n(x) = \mathbb{1}_{\mathbb{R}_+}(x)\frac{n^2x}{\sigma^2}\exp\left(-\frac{n^2x^2}{2\sigma^2}\right).$$

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, f_n est une densité de probabilité.
- 2. Pour tout $n \in \mathbb{N}^*$, on note X_n une variable aléatoire définie sur (Ω, \mathcal{A}, P) de densité f_n .
 - (a) Déterminer la fonction de répartition de X_n pour tout $n \in \mathbb{N}^*$.
 - (b) Pour tout $n \in \mathbb{N}^*$, montrer que X_n admet une espérance et la déterminer.
 - (c) Montrer que la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers la variable constante égale à 0.
 - (d) Montrer que la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en probabilité vers la variable constante égale à 0.

Exercice 2

Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à 3.

On note H le sous-espace vectoriel de E engendré par les trois polynômes (X-1)(X-2)(X-4), (X-1)(X-3)(X-4) et (X-2)(X-3)(X-4).

- 1. (a) Justifier que H est un hyperplan de E.
 - (b) Trouver une forme linéaire dont le noyau est égal à H. Est-elle unique ?
- 2. On considère le produit scalaire sur E défini pour tout $(P,Q)\in E^2$ par :

$$\langle P, Q \rangle = P(1)Q(1) + P(2)Q(2) + P(3)Q(3) + P(4)Q(4).$$

Calculer, pour tout polynôme $P \in E$, la projection orthogonale de P sur H^{\perp} .

Colle 2. Théo Mary

Question de cours. Convergence en loi de (X_n) dans le cas où $X_n \hookrightarrow \mathcal{B}(n, \lambda/n)$.

Exercice 3

Soient E et F deux espaces vectoriels euclidiens de dimensions non nulles. Soit f une application linéaire de E dans F et b un élément de F.

- 1. Montrer que $\min_{x \in E} ||b f(x)||$ existe.
- 2. Soit $\mathscr S$ l'ensemble des éléments de E qui réalisent ce minimum et a_0 un élément de $\mathscr S$.
 - (a) Montrer que $\mathscr{S} = \{a_0 + u, u \in \text{Ker } f\}.$
 - (b) Montrer que ${\mathscr S}$ contient un élément de norme minimale et un seul que nous noterons a.
 - (c) Montrer que a est caractérisé par $b-f(a) \in (\mathrm{Im} f)^{\perp}$ et $a \in (\mathrm{Ker} f)^{\perp}$.
- 3. (a) Montrer que l'application g de F dans E qui à tout élément b de F associe l'élément a obtenu à la question 2. est linéaire.

On dit que q est la pseudo-inverse de f.

(b) Montrer que $f \circ g$ est la projection orthogonale sur $\mathrm{Im} f$ et $g \circ f$ celle sur $(\mathrm{Ker} f)^{\perp}$. Que dire lorsque f est bijective ?

Exercice 4

On considère pour tout entier $n \geq 1$, la variable aléatoire Z_n qui est simulée dans la fonction Python ci-dessous.

Montrer que la suite de variables aléatoires (Z_n) converge en probabilité vers une variable aléatoire dont on précisera la loi.

Colle 3. Mathéo Morvan

Question de cours. Si F est un sous-espace vectoriel de E, alors $E = F \oplus F^{\perp}$ et $\dim(F^{\perp}) = \dim(E) - \dim(F)$.

Exercice 5

Soit (p_n) une suite de réels appartenant à]0,1[et, pour tout $n \in \mathbb{N}$, X_n une variable aléatoire suivant la loi géométrique de paramètre p_n .

- 1. On suppose que (p_n) converge vers 1.
 - (a) Étudier la convergence en loi de la suite (X_n) .
 - (b) La suite (X_n) converge-t-elle en probabilité ?
- 2. On suppose que (p_n) converge vers 0.
 - (a) Étudier la convergence en loi de la suite (X_n) .
 - (b) On pose $Y_n = p_n X_n$ pour tout $n \in \mathbb{N}$. Quelle est la limite en loi de la suite $(p_n X_n)$?

Exercice 6 Soit $n \in \mathbb{N}^*$. On pose $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ et $A = I_n - C$ $^tC \in \mathcal{M}_{n,1}(\mathbb{R})$

 $\mathcal{M}_n(\mathbb{R})$, où C est un vecteur colonne non nul. On confond $\mathcal{M}_{n,1}(\mathbb{R})$ et \mathbb{R}^n .

On note $f \in \mathcal{L}(\mathbb{R}^n)$ l'endomorphisme de matrice A dans la base canonique de \mathbb{R}^n . On munit \mathbb{R}^n de son produit scalaire usuel, et on note $\|\cdot\|$ la norme associée.

- 1. La matrice A est-elle diagonalisable ? Déterminer ses valeurs propres et les vecteurs propres associés.
- 2. À quelle condition sur C l'application f est-elle un projecteur ? Préciser alors de quel projecteur il s'agit.
- 3. Dans cette question, n = 4 et $C = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$. On note H le

sous-espace vectoriel de \mathbb{R}^4 d'équation x-y+z-t=0

- (a) Quelle est la dimension de ${\cal H}$?
- (b) Soit $U = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$. Déterminer le réel α défini par $\alpha = \inf\{\|U X\|, \ X \in H\}$.

La valeur α est-elle atteinte ? Si oui, préciser pour quel(s) vecteur(s) de H.

(c) Déterminer, dans la base canonique de \mathbb{R}^4 , la matrice B de la projection orthogonale sur H.