Produit scalaire et espaces euclidiens

Produit scalaire et norme euclidienne

Exercice 11.1 (\bigstar)

On considère le plan vectoriel \mathbb{R}^2 et on pose pour $x=(x_1,x_2)$ et $y=(y_1,y_2)$:

$$\langle x, y \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2.$$

- 1. Montrer que pour tout $x = (x_1, x_2) \in \mathbb{R}^2$, $\langle x, x \rangle = 2(x_1 + \frac{x_2}{2})^2 + \frac{3}{2}x_2^2$.
- 2. Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur \mathbb{R}^2 .
- 3. Montrer que les vecteurs (1,0) et (1,-2) sont orthogonaux pour ce produit scalaire et calculer leur norme. Les vecteurs (1,0) et (0,1) sont-ils orthogonaux?

Exercice 11.2 (★ - EML 2007)

Soit $n \in \mathbb{N}^*$. Montrer qu'on définit bien un produit scalaire sur $\mathbb{R}_n[x]$ en posant

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)(1-t^2) dt.$$

Exercice 11.3 (
$$\star\star$$
)
Soit $n \in \mathbb{N}^*$, soient $x_1, \ldots, x_n \in \mathbb{R}_+^*$ tels que $\sum_{i=1}^n x_i = 1$. Montrer que $\sum_{i=1}^n \frac{1}{x_i} \ge n^2$.

Étudier le cas d'égalité.

Exercice 11.4 (*)

On considère l'espace $E = \mathcal{C}^1([0,1],\mathbb{R})$ et on pose :

$$\forall f, g \in E, \quad \langle f, g \rangle = f(1)g(1) + \int_0^1 f'(t)g'(t) dt.$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- 2. Établir que $\forall f \in E$, $\left(f(1) + \int_0^1 f'(t) dt \right)^2 \le 2 \left(f(1)^2 + \int_0^1 f'(t)^2 dt \right)$.

Exercice 11.5 ($\star\star$ - Produit scalaire canonique de $\mathcal{M}_n(\mathbb{R})$ - $ilde{\sim}$)

On considère l'espace $E = \mathcal{M}_n(\mathbb{R})$ et on pose : $\langle A, B \rangle = \text{Tr}({}^tAB)$.

- 1. Montrer que pour tout $A = (a_{i,j}), B = (b_{i,j}): \langle A, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{i,j}$
- 2. Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- 3. Déterminer la norme du vecteur $J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & & 1 \end{pmatrix}$.
- 4. Établir que pour tout $A \in E$: $\left(\sum_{i=1}^{n} a_{i,i}\right)^{2} \leq n \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2}$.
- 5. Montrer que les sous-espaces $\mathscr{S}_n(\mathbb{R})$ des matrices symétriques réelles et $\mathscr{A}_n(\mathbb{R})$ des matrices antisymétriques réelles sont orthogonaux.

1

Exercice 11.6 (*)

Soit E un espace vectoriel réel muni d'un produit scalaire $\langle \cdot, \cdot \rangle$. On note $\| \cdot \|$ la norme euclidienne associée.

1. Montrer l'égalité suivante (appelée identité du parallélogramme) :

$$\forall x, y \in E, \quad ||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2).$$

Interpréter géométriquement ce résultat.

2. En déduire l'égalité suivante (appelée égalité de la médiane) :

$$\forall x, y \in E, \quad \left\| \frac{x+y}{2} \right\| = \frac{1}{2} \sqrt{2(\|x\|^2 + \|y\|^2) - \|x-y\|^2}.$$

Interpréter géométriquement ce résultat.

Exercice 11.7 ($\star\star\star$ - QSP HEC 2007)

Soit E un espace euclidien de dimension n. On note $\langle \cdot, \cdot \rangle$ le produit scalaire et $\| \cdot \|$ la norme associée. Soit f un endomorphisme de E qui vérifie la propriété suivante :

$$\forall (x,y) \in E^2, \quad \langle x,y \rangle = 0 \quad \Rightarrow \quad \langle f(x), f(y) \rangle = 0.$$

Montrer qu'il existe $k \in \mathbb{R}^+$ tel que pour tout $x \in E$, ||f(x)|| = k ||x||.

Indication. On pourra utiliser, après l'avoir justifié, que si x et y sont deux vecteurs de même norme, alors (x-y) et (x+y) sont orthogonaux.

Exercice 11.8 (★★★ - Famille obtusangle - QSP ESCP 2010)

Soit E un espace euclidien de dimension n et soient e_1, \ldots, e_{n+1} des vecteurs tels que pour tout $(i, j) \in [1, n+1]^2$, $i \neq j, \langle e_i, e_j \rangle < 0$.

- 1. En utilisant la norme de $u = \sum_{i=1}^{n} \lambda_i e_i$, montrer que si $\sum_{i=1}^{n} \lambda_i e_i = 0_E$, alors $\sum_{i=1}^{n} |\lambda_i| e_i = 0_E$.
- 2. Montrer que n quelconques de ces vecteurs forment une base de E.

Bases orthonormées

Exercice 11.9 (\bigstar)

Soit \mathbb{R}^4 muni du produit scalaire canonique. On note \mathscr{B} la base canonique de \mathbb{R}^4 .

- 1. On pose $v_1 = (3, 4, 0, 0), v_2 = (-4, 3, 0, 0), v_3 = (0, 0, 5, 12), v_4 = (0, 0, -12, 5)$. La famille (v_1, v_2, v_3, v_4) est-elle orthogonale? En déduire une base orthonormée $\mathscr{C} = (e_1, e_2, e_3, e_4)$ de \mathbb{R}^4 .
- 2. Déterminer $P_{\mathscr{C},\mathscr{B}}$.

Exercice 11.10 (\bigstar)

On se place dans \mathbb{R}^4 muni du produit scalaire canonique. On considère le sous-espace $E = \{(x, y, z, t) \in \mathbb{R}^4, y = -z\}$. On note $e_1 = \frac{1}{2}(1, 1, -1, -1), e_2 = \frac{1}{\sqrt{2}}(1, 0, 0, 1)$ et $e_3 = \frac{1}{2}(-1, 1, -1, 1)$.

- 1. Montrer que (e_1, e_2, e_3) est une base orthonormée de E.
- 2. Justifier que $u=(2,3,-3,7)\in E$ et déterminer $(\alpha,\beta,\gamma)\in\mathbb{R}^3$ tel que $u=\alpha e_1+\beta e_2+\gamma e_3$.

Exercice 11.11 (★★ - 🔊)

On considère $E = \mathscr{M}_n(\mathbb{R})$ muni du produit scalaire $\langle M, N \rangle = \operatorname{Tr}({}^t M N)$. Soit $(E_{i,j})_{1 \leq i,j \leq n}$ la base canonique de E.

- 1. Montrer que pour tout $1 \leq i, j, k, l \leq n, E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l}$.
- 2. Montrer que $(E_{i,j})_{1 \leq i,j \leq n}$ est une base orthonormale de E.

Exercice 11.12 (** - Procédé d'orthonormalisation de Gram-Schmidt)

Dans chacun des cas suivants, donner une base orthonormée du sous espace vectoriel F de E, muni du produit scalaire $\langle \cdot, \cdot \rangle$.

- 1. $E = \mathbb{R}^3$, F = Vect((1, 0, -2), (1, 1, 1)), produit scalaire canonique;
- 2. $E = F = \mathbb{R}_2[x], \langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$;
- $3. \ E=\mathscr{M}_2(\mathbb{R}), F=Vect\left(\begin{pmatrix}1&0\\0&-1\end{pmatrix},\begin{pmatrix}1&0\\0&2\end{pmatrix},\begin{pmatrix}1&1\\1&-2\end{pmatrix}\right),\ \langle M,N\rangle=\mathrm{Tr}({}^tMN)\ ;$
- 4. $E = \mathbb{R}^4$, F = Vect((1,0,1,0), (1,1,0,1), (2,0,1,1)), produit scalaire canonique;
- 5. $E = \mathbb{R}[x], F = \text{Vect}(x^2 + 1, x^3 + 1), \langle P, Q \rangle = \int_0^1 P(t)Q(t) dt.$

Solutions.

Solutions.
1.
$$\left(\frac{1}{\sqrt{5}}(1,0,-2), \frac{1}{\sqrt{70}}(6,5,3)\right)$$
2. $\left(\frac{1}{2}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{45}{8}}\left(x^2 - \frac{1}{3}\right)\right)$
3. $\left(\frac{1}{\sqrt{2}}\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix}0 & 1\\ 1 & 0\end{pmatrix}\right)$
4. $\left(\frac{1}{\sqrt{2}}(1,0,1,0), \frac{1}{\sqrt{10}}(1,2,-1,2), \frac{1}{\sqrt{15}}(1,-3,-1,2)\right)$
5. $\left(\sqrt{\frac{15}{28}}(x^2 + 1), \frac{\sqrt{7}}{2}(16x^3 - 15x^2 + 1)\right)$

Exercice 11.13 ($\star\star\star$ - Oral HEC 2021)

On considère une famille de vecteurs unitaires (e_1,\ldots,e_p) de E espace euclidien de dimension n, vérifiant la relation suivante:

$$\forall v \in E, \quad ||v||^2 = \sum_{k=1}^p \langle e_k, v \rangle^2.$$

Montrer que la famille (e_1, \ldots, e_p) est orthonormale, puis que c'est une base orthonormale de E. En déduire que n = p.

Exercice 11.14 (★★★★ - Endomorphismes orthogonaux - Oral ESCP 2013 - 🔄)

On désigne par n un entier naturel supérieur ou égal à 2. Soit E un espace euclidien de dimension n.

On note $\langle u, v \rangle$ le produit scalaire de deux vecteurs u et v de E, et $\|\cdot\|$ la norme euclidienne associée.

On dit qu'un endomorphisme f de E est orthogonal si sa matrice dans une base orthonormale est une matrice orthogonale.

- 1. Montrer que f est orthogonale si, et seulement si : $\forall x, y \in E, \langle f(x), f(y) \rangle = \langle x, y \rangle$.
- 2. Soit f un endomorphisme de E.
 - (a) Montrer que si f est orthogonale, alors pour tout $x \in E$: ||f(x)|| = ||x||.
 - (b) Montrer réciproquement que, si pour tout x de E, on a ||f(x)|| = ||x||, alors f est orthogonal.

Polynômes orthogonaux

Exercice 11.15 $(\star\star)$

Soit n un entier naturel et a un réel. On note E l'espace vectoriel des polynômes à cœfficients réels, de dégré inférieur ou égal à n et φ l'application définie, pour tout couple (P,Q) de vecteurs de E, par :

$$\varphi(P,Q) = \sum_{k=0}^{n} P^{(k)}(a)Q^{(k)}(a).$$

1. Montrer que φ est un produit scalaire. On notera désormais $\varphi(P,Q) = \langle P,Q \rangle$.

- 2. Pour tout entier naturel i, on note $P_i = (x-a)^i$.
 - (a) Calculer $P_i^{(k)}(a)$ pour tout $k \in \mathbb{N}$.
 - (b) Montrer que la famille (P_0, P_1, \dots, P_n) est une famille orthogonale de E.
 - (c) Pour tout entier i de $\{0,\ldots,n\}$, calculer $||P_i||$. En déduire une base orthonormée \mathscr{B} de E.
- 3. Exprimer les coordonnées d'un polynôme P de E, dans cette base \mathscr{B} , à l'aide des dérivées successives de P en a. Retrouver ainsi la formule de Taylor pour les polynômes.

Exercice 11.16 (★★ - Polynômes de Tchebychev - 🔊)

- 1. (a) Montrer que l'intégrale $\int_{-1}^{1} \frac{t^k}{\sqrt{1-t^2}} dt$ converge pour tout $k \in \mathbb{N}$.
 - (b) Soit $P \in \mathbb{R}[x]$. En déduire que l'intégrale $\int_{-1}^1 \frac{P(t)}{\sqrt{1-t^2}} \mathrm{d}t$ converge.
- 2. Soit $n \in \mathbb{N}^*$. Pour P et Q deux éléments de $\mathbb{R}_n[x]$, on pose $\langle P, Q \rangle = \int_{-1}^1 \frac{P(t)Q(t)}{\sqrt{1-t^2}} \mathrm{d}t$.

Montrer que cette application définit un produit scalaire sur $\mathbb{R}_n[x]$.

- 3. (a) Soit $a, b \in \mathbb{R}$. Exprimer $\cos(a)\cos(b)$ en fonction de $\cos(a+b)$ et $\cos(a-b)$.
 - (b) On définit la suite de polynômes $(T_k)_{0 \le k \le n}$ par :

$$T_0 = 1$$
, $T_1 = x$ et $\forall 2 \le k \le n - 2$, $T_{k+2} = 2xT_{k+1} - T_k$.

Montrer que pour tout $0 \le k \le n$ et pour tout $x \in \mathbb{R}$, on a $T_k(\cos(x)) = \cos(kx)$.

- 4. Montrer que la famille (T_0, T_1, \ldots, T_n) est une famille orthogonale de $\mathbb{R}_n[x]$. On pourra effectuer le changement de variables $t = \cos(x)$ dans l'intégrale définissant $\langle T_i, T_j \rangle$.
- 5. Calculer $||T_k||$ pour tout $k \in \mathbb{N}$. En déduire une base orthonormée de $\mathbb{R}_n[x]$.

Exercice 11.17 (*** - Polynômes orthogonaux - 🔊

On considère une fonction continue strictement positive $\omega:[a,b]\to\mathbb{R}$, et on pose :

$$\forall P, Q \in \mathbb{R}_n[x], \quad \langle P, Q \rangle = \int_a^b P(t)Q(t)\omega(t) \, \mathrm{d}t.$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}_n[x]$.
- 2. Établir l'existence d'une base orthonormée de polynômes (P_0, P_1, \dots, P_n) tels que $\deg(P_k) = k$ pour $0 \le k \le n$.

En déduire que pour tout $1 \le k \le n$, P_k est orthogonale à $\mathbb{R}_{k-1}[x]$.

3. Montrer, pour $0 \le k \le n-1$, qu'il existe a_k, b_k, c_k (avec $c_0 = 0$) tels que :

$$xP_k(x) = a_k P_{k+1}(x) + b_k P_k(x) + c_k P_{k-1}(x).$$

Comparer les deux nombres c_k et a_{k-1} .

4. Soit $k \in \mathbb{N}^*$. Dans cette question, on souhaite montrer que toutes les racines de P_k sont des réels appartenant à l'intervalle]a,b[, et qu'elles sont toutes de multiplicité 1.

Notons x_1, \ldots, x_p les racines d'ordre impaires de P_k appartenant à]a, b[, et on définit le polynôme $D = \prod_{i=1}^p (x - x_i)$ (dans le cas où P_k n'a aucune racine d'ordre impair dans]a, b[, on pose D = 1).

- (a) Justifier que P_kD garde un signe constant sur [a,b].
- (b) Par l'absurde, on suppose que p < k. Obtenir une contradiction en considérant le produit scalaire $\langle P_k, (x-x_1) \dots (x-x_p) \rangle$. Conclure.