DM7

Devoir maison à rendre le 07/12/2023

Exercice 1

On admet que toutes les variables aléatoires considérées dans cet exercice sont définies sur le même espace probabilisé (Ω, \mathcal{A}, P) que l'on ne cherchera pas à déterminer.

On considère une variable aléatoire X suivant la loi exponentielle de paramètre $\frac{1}{2}$ et on pose $Y=\sqrt{X}$.

1. On suppose avoir importé en Python les librairies numpy et numpy.random à l'aide des préfixes np et rd respectivement. On rappelle que la commande rd.exponential(1/lambda simule une variable aléatoire suivant la loi exponentielle de paramètre λ .

Écrire une (ou des) commande(s) Python utilisant rd.exponential et permettant de simuler Y.

- 2. (a) Déterminer la fonction de répartition F_Y de Y.
 - (b) En déduire une densité f_Y de Y.
- 3. (a) Rappeler la valeur du moment d'ordre 2 d'une variable aléatoire Z suivant la loi normale centrée réduite.
 - (b) En déduire que Y possède une espérance et donner sa valeur.
- 4. On pose $U = 1 e^{-X/2}$.
 - (a) Vérifier que $U(\Omega) = [0, 1[$.
 - (b) Déterminer la fonction de répartition F_U de U et reconnaître la loi de U.
 - (c) Exprimer X en fonction de U, puis en déduire une simulation Python de Y utilisant uniquement la fonction rd.random.

Exercice 2

Soit $n \in \mathbb{N}^*$, on note E l'ensemble des fonctions $f : \mathbb{R}_+^* \to \mathbb{R}$ telles qu'il existe deux polynômes P, Q appartenant à $\mathbb{R}_{n-1}[x]$ avec :

$$\forall x \in \mathbb{R}_+^*, \qquad f(x) = xP(x) + x\ln(x)Q(x).$$

Pour tout entier $k \in \{1, ..., n\}$, on pose :

$$u_k: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & x^k \end{array} \right. \quad \text{et} \quad v_k: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & x^k \ln(x) \end{array} \right.$$

Pour toute fonction f appartenant à E, on note $\varphi(f)$ la fonction définie sur \mathbb{R}_+^* par :

$$\forall x \in \mathbb{R}_+^*, \qquad \varphi(f)(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$$

et on note φ l'application qui à $f \in E$ associe $\varphi(f)$.

1. Prouver que E est un \mathbb{R} -espace vectoriel et que $E = \text{Vect}(u_1, v_1, \dots, u_n, v_n)$ (c'est-à-dire que E est l'espace vectoriel engendré par les fonctions $u_1, v_1, \dots, u_n, v_n$).

On admettra que la famille $\mathscr{B} = (u_1, v_1, \dots, u_n, v_n)$ est une base de E.

- 2. Justifier que chaque fonction f de E se prolonge en une fonction continue sur \mathbb{R}_+ et, pour tout $k \in \{1, \ldots, n\}$, calculer $\varphi(u_k)$ et $\varphi(v_k)$.
- 3. Démontrer que φ est linéaire. En déduire que $\varphi(f) \in E$ lorsque $f \in E$.
- 4. Écrire la matrice de φ dans la base \mathscr{B} .
- 5. L'endomorphisme φ est-il bijectif? Quelles sont ses valeurs propres?
- 6. Soit $f \in E$ un vecteur propre de φ associé à la valeur propre λ . On suppose que λ est non nul et on considère la fonction g définie sur \mathbb{R}_+^* par :

$$\forall x \in \mathbb{R}_+^*, \qquad g(x) = x^{-1/\lambda} \int_0^x f(t) \, \mathrm{d}t.$$

Montrer que g est constante sur \mathbb{R}_+^* . En déduire l'expression de la fonction $x \mapsto \int_0^x f(t) dt$ puis celle de f.

- 7. Pour chaque valeur propre λ de φ , déterminer la dimension de l'espace propre de φ associé à la valeur propre λ .
 - (Cube) L'endomorphisme φ est-il diagonalisable ?

Exercice 3

Dans tout l'exercice, n est un entier naturel supérieur ou égal à 2.

- 1. Soit A la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les éléments diagonaux valent -n, les autres valant tous 1. On note J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les éléments sont égaux à 1, et I la matrice identité de $\mathcal{M}_n(\mathbb{R})$.
 - (a) Exprimer A comme combinaison linéaire de J et de I, puis faire de même pour A^2 .
 - (b) En déduire un polynôme annulateur de A puis donner les valeurs propres possibles de A.
 - (c) Montrer que A est inversible.

Dans la suite, on considère un espace euclidien E, de dimension n+1, dont le produit scalaire est noté $\langle \cdot, \cdot \rangle$ et la norme $\| \cdot \|$.

On note $(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_n)$ une base orthonormée de E et on pose : $u = \frac{1}{\sqrt{n+1}} \sum_{k=0}^n \varepsilon_k$.

On pose aussi :
$$\forall i \in [0, n], e_i = \sqrt{\frac{n+1}{n}} (\varepsilon_i - \langle \varepsilon_i, u \rangle u)$$

- 2. Calculer la norme du vecteur u.
- 3. (a) Montrer que pour tout i de [0, n], on a : $||e_i|| = 1$.
 - (b) Montrer également que pour tout couple (i, j) d'entiers distincts de [0, n], on a :

$$\langle e_i, e_j \rangle = -\frac{1}{n}.$$

- (c) Montrer que $\varphi : x \in E \mapsto \langle x, u \rangle$ est une forme linéaire non nulle sur E. En déduire la dimension de $F = \text{Ker}(\varphi)$.
- (d) Montrer que les vecteurs e_0, e_1, \ldots, e_n appartiennent à F.
- (e) Montrer en utilisant la question 1.(c) que (e_1, e_2, \dots, e_n) est une base de F.
- 4. On considère l'application f de $F\times F$ dans $\mathbb R$ définie par :

$$\forall (x,y) \in F \times F, \quad f(x,y) = \sum_{k=0}^{n} \langle x, e_k \rangle \langle y, e_k \rangle - \frac{n+1}{n} \langle x, y \rangle.$$

- (a) Montrer que f est une forme bilinéaire symétrique.
- (b) Pour tout couple (i, j) de $[1, n]^2$, déterminer $f(e_i, e_j)$ en distinguant les cas i = j et $i \neq j$.
- (c) En déduire que : $\forall (x,y) \in F \times F$, $\sum_{k=0}^{n} \langle x, e_k \rangle \langle y, e_k \rangle = \frac{n+1}{n} \langle x, y \rangle$.
- (d) En déduire également que pour tout x de F, on a : $||x||^2 = \frac{n}{n+1} \sum_{k=0}^{n} \langle x, e_k \rangle^2$.