Formes linéaires et hyperplans

Dans toute la suite, E désigne un espace vectoriel de dimension n.

Formes linéaires

Définition.

On dit que φ est une forme linéaire sur E si φ est une application linéaire sur E à valeurs dans \mathbb{R} .

Exemples.

- Soit $(a,b,c) \in \mathbb{R}^3$, $(a,b,c) \neq (0,0,0)$. L'application $\varphi : (x,y,z) \in \mathbb{R}^3 \mapsto ax + by + cz \in \mathbb{R}$ est une forme linéaire sur E.
- $\varphi: P \in \mathbb{R}_n[x] \mapsto P(0) \in \mathbb{R}$ est une forme linéaire sur $\mathbb{R}_n[x]$.
- L'application trace $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \operatorname{Tr}(M) \in \mathbb{R}$ est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$.

Vocabulaire. L'espace vectoriel $\mathcal{L}(E,\mathbb{R})$ des formes linéaires sur E est souvent noté E^* , appelé l'espace dual de E.

Donnons un autre exemple de formes linéaires : les formes linéaires coordonnées dans une base de E.

- Propriété 1 (Formes linéaires coordonnées) —

Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. Pour tout $1 \leq i \leq n$, on définit la i-ième application coordonnée $\varphi_i : E \to \mathbb{R}$ par :

 $\varphi_i(x) = \text{i-ème coordonn\'ee de } x \text{ dans la base } \mathscr{B}.$

L'application φ_i est une forme linéaire pour tout $1 \leq i \leq n$.

Preuve. Soient $x, y \in E$ et $\lambda, \mu \in \mathbb{R}$. Il existe un unique n-uplet $(x_1, \dots, x_n) \in \mathbb{R}^n$ tel que :

$$x = x_1 e_1 + \dots + x_n e_n.$$

De même, y se décompose de manière unique dans la base \mathscr{B} :

$$\exists ! (y_1, \dots, y_n) \in \mathbb{R}^n, \ y = y_1 e_1 + \dots y_n e_n.$$

Calculons:

$$\lambda x + \mu y = (\lambda x_1 + \mu y_1)e_1 + \dots + (\lambda_n x_n + \mu y_n)e_n$$

Pour tout $1 \le i \le n$, il suit que :

$$\varphi_i(\lambda x + \mu y) = \lambda x_i + \mu y_i = \lambda \varphi_i(x) + \mu \varphi_i(y).$$

Ainsi φ_i est linéaire. Comme de plus φ_i est à valeurs dans \mathbb{R} , c'est bien une forme linéaire sur E. \square

Exemple. Prenons le vecteur $u = (3, 2, 1) \in \mathbb{R}^3$.

• Dans la base canonique $\mathscr{B} = (e_1, e_2, e_3)$, u s'écrit $u = 3e_1 + 2e_2 + 1e_3$. Si on note φ_i les formes linéaires coordonnées associées à \mathcal{B} , on obtient :

$$\varphi_1(u) = 3, \ \varphi_2(u) = 2, \ \varphi_3(u) = 1.$$

• Dans la base $\mathcal{B}' = (f_1, f_2, f_3)$ où $f_1 = (1, 0, 0), f_2 = (1, 1, 0), f_3 = (1, 1, 1), u$ se décompose :

$$u = f_1 + f_2 + f_3$$
.

Si on note ψ_i les formes linéaires coordonnées associées à \mathcal{B} , on obtient cette fois :

$$\psi_1(u) = 1, \ \psi_2(u) = 1, \ \psi_3(u) = 1.$$

- Pour tout $x \in E$: $x = \sum_{i=1}^{n} \varphi_i(x)e_i$. Pour tout $1 \le i, j \le n$: $\varphi_i(e_j) = \delta_{i,j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$.

Preuve.

• Par définition, $\varphi_i(x)$ est la *i*-ème composante de x dans la base \mathscr{B} , d'où :

$$x = \varphi_1(x)e_1 + \dots + \varphi_n(x)e_n.$$

• Écrivons $e_j = 0 \cdot e_1 + \dots + 1 \cdot e_j + \dots + 0 \cdot e_n$. Donc la *i*-ème coordonnée de e_j dans la base \mathscr{B} est 0 si $i \neq j$, et 1 si i = j. D'où le résultat.

Soient $\mathscr{B}=(e_1,\ldots,e_n)$ une base de E, et $(\varphi_1,\ldots,\varphi_n)$ la famille des formes linéaires coordonnées associées à \mathcal{B} .

Alors $(\varphi_1, \ldots, \varphi_n)$ est une base de $E^* = \mathcal{L}(E, \mathbb{R})$, appelée base duale de E.

Preuve. Posons $\mathscr{F} = (\varphi_1, \dots, \varphi_n)$. On souhaite montrer que \mathscr{F} est une base de $\mathscr{L}(E, \mathbb{R})$. Pour cela, remarquons d'abord que $\dim(\mathcal{L}(E,\mathbb{R})) = \dim(E) \times \dim(\mathbb{R}) = n \times 1 = n$, et $\operatorname{Card}(\mathscr{F}) = n$. Il suffit donc de montrer que la famille est libre. Soit pour cela $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tels que :

$$\alpha_1 \varphi_1 + \dots + \alpha_n \varphi_n = 0_{\mathscr{L}(E,\mathbb{R})} \tag{*}$$

Montrons que $\alpha_1=\cdots=\alpha_n=0.$ Fixons $j\in [\![1,n]\!]$ et évaluons (*) en e_j :

$$\alpha_1 \varphi_1(e_i) + \dots + \alpha_i \varphi_i(e_i) + \dots + \alpha_n \varphi_n(e_i) = 0.$$

Puisque $\varphi_i(e_j) = \delta_{i,j}$, on obtient $\alpha_j = 0$, et ce pour tout $1 \le j \le n$.

La famille \mathscr{F} est donc libre, c'est bien une base de $\mathscr{L}(E,\mathbb{R})$.

2

Hyperplans

Définition.

Un hyperplan de E est un sous-espace vectoriel H de E de dimension $\dim(E) - 1$.

Exemples.

- Un hyperplan de \mathbb{R}^2 est un sous-espace vectoriel de \mathbb{R}^2 de dimension 1, en d'autres termes une droite vectorielle Vect(a) avec $a \neq 0_E$.
- Un hyperplan de \mathbb{R}^3 est un sous-espace vectoriel de \mathbb{R}^3 de dimension 2. En d'autres termes, il s'agit d'un plan vectoriel Vect(a, b) avec a, b des vecteurs non colinéaires.

– Propriété 4 –

Soit H un hyperplan de E, et $a \notin H$. Alors :

$$E = H \oplus \operatorname{Vect}(a)$$
.

Preuve. Puisque $\dim(H) = n - 1$ et $\dim(\operatorname{Vect}(a)) = 1$ car $a \neq 0_E$, il suit que $\dim(H) + \dim(\operatorname{Vect}(a)) = n$.

Étudions le sous-espace vectoriel $H \cap Vect(a)$:

$$H \cap \operatorname{Vect}(a) \subset \operatorname{Vect}(a)$$
 et $\dim \operatorname{Vect}(a) = 1$.

Donc $\dim(H \cap \operatorname{Vect}(a))$ est égale à 0 ou 1. Si $\dim(H \cap \operatorname{Vect}(a)) = 1 = \dim(\operatorname{Vect}(a))$, alors $H \cap \operatorname{Vect}(a) = \operatorname{Vect}(a)$, et on aurait $a \in \operatorname{Vect}(a) = H \cap \operatorname{Vect}(a) \subset H$, ce qui n'est pas le cas par hypothèse.

Ainsi $\dim(H \cap \operatorname{Vect}(a)) = 0$, et $H \cap \operatorname{Vect}(a) = \{0_E\}$. On peut donc conclure que $E = H \oplus \operatorname{Vect}(a)$. \square

Formes linéaires et hyperplans

Théorème 5

Soit H un sous-espace vectoriel d'un espace vectoriel E de dimension finie.

- (1) H est un hyperplan si, et seulement si, c'est le noyau d'une forme linéaire non nulle.
- (2) Si $H = \text{Ker}(\varphi) = \text{Ker}(\psi)$, alors il existe $\lambda \in \mathbb{R}^*$ tel que $\varphi = \lambda \psi$.

Preuve.

(1) \Leftarrow Soit $\varphi \in \mathcal{L}(E,\mathbb{R}), \varphi \neq 0$, telle que $H = \text{Ker}(\varphi)$. Par le théorème du rang :

$$\dim(H) = \dim(E) - \operatorname{rg}(\varphi).$$

Or $\operatorname{Im}(\varphi)$ est un sous-espace vectoriel de \mathbb{R} , c'est donc $\{0_E\}$ ou \mathbb{R} . Ce n'est pas $\{0_E\}$ car $\varphi \neq 0$. Donc $\operatorname{Im}(\varphi) = \mathbb{R}$, et $\operatorname{rg}(\varphi) = 1$. D'où le résultat.

 \Rightarrow Supposons que H soit un hyperplan de E. On considère (e_1, \ldots, e_{n-1}) une base de H, qu'on complète en (e_1, \ldots, e_n) une base de E. Notons $(\varphi_1, \ldots, \varphi_n)$ la base duale de (e_1, \ldots, e_n) . Pour tout $x \in E$:

$$x \in \text{Ker}(\varphi_n) \Leftrightarrow \varphi_n(x) = 0 \Leftrightarrow x = \varphi_1(x)e_1 + \dots + \varphi_{n-1}(x)e_{n-1} \Leftrightarrow x \in H.$$

Ainsi $H = \text{Ker}(\varphi_n)$, et est bien le noyau d'une forme linéaire non nulle (puisque $\varphi_n(e_n) = 1$).

(2) Supposons que $H = \text{Ker}(\varphi) = \text{Ker}(\psi)$, et soit $a \notin H$. On a montré qu'alors :

$$E = H \oplus \operatorname{Vect}(a)$$
.

Remarquons que $\psi(a) \neq 0$ et $\varphi(a) \neq 0$, sinon ces formes linéaires seraient nulles (elles seraient nulles sur H, sur Vect(a), et donc sur E). Posons :

$$\lambda = \frac{\varphi(a)}{\psi(a)}$$

et montrons que $\varphi = \lambda \psi$. Pour cela, remarquons que :

- pour tout $x \in H(Ker(\varphi) = Ker(\psi)), \varphi(x) = 0 = \lambda \psi(x)$;
- $\lambda \psi(a) = \frac{\varphi(a)}{\psi(a)} \times \psi(a) = \varphi(a).$

Les deux formes linéaires φ et $\lambda \psi$ coïncident donc sur H, en a et donc sur Vect(a). Elles sont donc égales (puisque $E = H \oplus \text{Vect}(a)$), et de sorte que $\varphi = \lambda \psi$.

Remarque. Ainsi un hyperplan H est défini par une équation linéaire $\varphi(x) = 0$ avec $\varphi \in \mathcal{L}(E, \mathbb{R})$ telle que $H = \text{Ker}(\varphi)$. Cette équation est de plus unique (à un scalaire multiplicatif non nul près).

Exemples.

• Soit $(a,b,c) \in \mathbb{R}^3$, $(a,b,c) \neq (0,0,0)$. Considérons la forme linéaire $\varphi : (x,y,z) \in \mathbb{R}^3 \mapsto ax + by + cz \in \mathbb{R}$. Son noyau est donc un hyperplan H, donné par

$$H = \{(x, y, z) \in \mathbb{R}^3, \ ax + by + cz = 0\}$$

Il s'agit du plan vectoriel (sous-espace de dimension 2) d'équation ax + by + cz = 0.

• Considérons la forme linéaire $\varphi: P \in \mathbb{R}_n[x] \mapsto P(0) \in \mathbb{R}$. Son noyau est un hyperplan H de $\mathbb{R}_n[x]$, qu'on peut décrire de la manière suivante :

$$P = a_n x^n + \dots + a_1 x + a_0 \in \text{Ker}(\varphi) \quad \Leftrightarrow \quad P(0) = 0$$

$$\Leftrightarrow \quad a_0 = 0$$

Ainsi
$$H = \{a_n x^n + \dots + a_1 x, a_n, \dots, a_1, a_0 \in \mathbb{R}\} = \text{Vect}(x, x^2, \dots, x^n).$$

• Considérons la trace $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \operatorname{Tr}(M) \in \mathbb{R}$. Son noyau est l'hyperplan de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices de trace nulle. Comme de plus $I_n \notin \operatorname{Ker}(\operatorname{Tr})$, il suit par la Propriété 4 que

$$\mathcal{M}_n(\mathbb{R}) = \operatorname{Ker}(\operatorname{Tr}) \oplus \operatorname{Vect}(I_n).$$